Skip to main content
Log in

Kinetics and rate-limiting mechanisms of dolomite dissolution at various CO2 partial pressures

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Techniques of rotating-disk and catalyst were used in investigating the kinetics of dolomite dissolution in flowing CO2-H2O system. Experiments run in the solutions equilibrated with various CO2 partial pressures (PCO 2 ) from 30 to 100000 Pa. It shows that dissolution rates of dolomite are related with rotating speeds at conditions far from equilibrium. This was explained by modified diffusion boundary layer (DBL) model. In addition, the dissolution rates increase after addition of carbonic anhydrase (CA) to solutions, where the CA catalyzes CO2 conversion. However, great differences occur among various CO2 partial pressures. The experimental observations give a conclusion that the modified DBL model enables one to predict dissolution rates and their behaviour at various PCO 2 with satisfactory precision at least far from equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lund, K., Fogler, H. S., McCune, C. C., Acidization—1. The dissolution of dolomite in hydrochloric acid, Chem. Eng. Sci., 1973, 28:691–700.

    Article  CAS  Google Scholar 

  2. Herman, J. S., The dissolution kinetics of calcite, dolomite and dolomite rocks in carbon dioxide water system, PH. D. Thes., Pennsylvania State Univ., 1982.

  3. Busenberg, E., Plummer, L. N., The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65°C and 0 to 1 atm PCO 2, Amer. Jour. Sci., 1982, 282: 45–78.

    CAS  Google Scholar 

  4. Chou, L., Garreis, R. M., Wollast, R., Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol, 1989, 78: 269–282.

    Article  CAS  Google Scholar 

  5. Liu, Z., Yuan, D., He, S. et al. Geochemical features of the geothermal CO2-water-carbonate rock system and analysis on its CO2 Sources, Science in China, Series D, 2000, 43(6): 569–576.

    CAS  Google Scholar 

  6. Shangguan, Z., Bai, C, Sun M., Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong County, Yunnan Province, China, Science in China, Series D, 2000, 43(2): 132–140.

    CAS  Google Scholar 

  7. Dreybrodt, W., Lauckner, J., Liu, Z. et al., The kinetics of the reaction CO2+ H2O⇒H++ HCO3 - as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, Geochim. Cosmochim. Acta,1996, 60: 3375–3381.

    Article  CAS  Google Scholar 

  8. Liu, Z., Dreybrodt, W., Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2↔H++HCO3 - Geochim. Cosmochim. Acta,1997, 61: 2879–2889.

    Article  CAS  Google Scholar 

  9. Dreybrodt, W., Eisenlohr, L., Madry, B. et al., Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2by the slow process H++HCO3 - ⇒ CO2 + H2O as a rate limiting step, Geochim. Cosmochim. Acta,1997, 61:3897–3904.

    Article  CAS  Google Scholar 

  10. Dreybrodt, W., Buhmann, D., A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion, Chem. Geol., 1991, 90: 107–122.

    Article  CAS  Google Scholar 

  11. Dreybrodt, W., Processes in Karst Systems, Springer Series in Physical Environment, Heidelberg: Springer, 1988.

    Google Scholar 

  12. Levich, V. G., Physicochemical Hydrodynamics, Englewood Ceiffs: Prentice-Hall, 1962.

    Google Scholar 

  13. Pleskov, Y V., Filinovskii, V. Y., The Rotating Disc Electrode, New York: Consultants Bureau, 1976.

    Google Scholar 

  14. Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., The kinetics of calcite dissolution in CO2-water systems at 5–60°C and 0.0-1.0 atm CO2, Am. J. Sci., 1978, 278: 179–216.

    CAS  Google Scholar 

  15. Kern, M.D., The hydration of carbon dioxide, J. Chem. Educ., 1960,37: 14–23.

    Article  CAS  Google Scholar 

  16. Usdowski, E., Reactions and equilibria in the systems CO2-H2O and CaCO3-CO2-H2O, Areview, N. J. Mineral Abh.,1982, 144: 148–171.

    CAS  Google Scholar 

  17. Arvidson, R. S., Mackenzie, F. T., The dolomite problem: the control of precipitation kinetics by temperature and saturation state, Amer. Jour. Sci., 1999, 299: 257–288.

    Article  CAS  Google Scholar 

  18. Gautelier, M., Oelkers, E. H., Schott, J., An experimental study of dolomite dissolution rates as a function of pH from-0.5 to5 and temperature from 25to80°C,Chem. Geol., 1999, 157: 13–26.

    Article  CAS  Google Scholar 

  19. Herman, J. S., White, W. B., Dissolution kinetics of dolomite: effect of lithology and fluid velocity, Geochim. Cosmochim. Acta,1985,49: 2017–2026.

    Article  CAS  Google Scholar 

  20. Orton, R., Unwin, P. R., Dolomite dissolution kinetics at low pH: a channel-flow study, J. Chem. Soc, Faraday Trans., 1993, 89:3947–3954

    Article  CAS  Google Scholar 

  21. Vasconcelos, C. O., McKenzie, J. A., Bernasconi, S. et al., Microbial mediation as a possible mechanism for natural dolomite formation at low temperature, Nature, 1995, 337: 220–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wolfgang, D. Kinetics and rate-limiting mechanisms of dolomite dissolution at various CO2 partial pressures. Sc. China Ser. B-Chem. 44, 500–509 (2001). https://doi.org/10.1007/BF02880680

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02880680

Keywords

Navigation