Skip to main content
Log in

Extreme properties of quermassintegrals of convex bodies

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish two theorems for the quermassintegrals of convex bodies, which are the generalizations of the well-known Aleksandrov’ s projection theorem and Loomis-Whitney’ s inequality, respectively. Applying these two theorems, we obtain a number of inequalities for the volumes of projections of convex bodies. Besides, we introduce the concept of the perturbation element of a convex body, and prove an extreme property of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K., Shadows of convex bodies, Trans. Amer. Math. Soc., 1991, 327: 891–901.

    Article  MATH  MathSciNet  Google Scholar 

  2. Lutwak, E., Mixed projection inequalities, Trans. Amer. Math. Soc., 1985, 287: 92–106.

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Lindenstrauss, J.. Projection bodies, Israel Seminar (G. A. F. A) 1986-1987, Lecture Notes in Math. Vol. 1317, Berlin-New York: Springer-Verlag. 1988, 250–269.

    Google Scholar 

  4. Chakerian, G. D., Lutwak, E., Bodies with similar projections, Trans. Amer. Math. Soc., 1997, 349: 1811–1820.

    Article  MATH  MathSciNet  Google Scholar 

  5. Schneider, R., Weil, W., Zonoids and related topics, Convexity and its Applications (eds. Gruber, P. M., Wills, J. M.), Basel: Birkhäuser, 1983, 296–316.

    Google Scholar 

  6. Schneider, R., Convex Bodies: the Brunn- Minkowski Theory, Cambridge : Cambridge University Press, 1993.

    MATH  Google Scholar 

  7. Schneider, R., On the determination of convex bodies by projection and girth functions, Result Math., 1998, 33: 155–160.

    MATH  Google Scholar 

  8. Thompson, A. C., Minkowski Geometry, Cambridge: Cambridge University Press, 1996.

    MATH  Google Scholar 

  9. Petty, C. M., Projection bodies, in Proceedings, Coll Convexity, Copenhagen, 1965, Kφbenhavns Univ. Mat. Inst., 1967, 234–241.

  10. Schneider, R., Zu einem problem von Shephard über die projectionen konvexer körper, Math. Z., 1967, 101: 71–81.

    Article  MATH  MathSciNet  Google Scholar 

  11. Ball, K., Volume ratios and a reverse isoprimetric inequalitity, J. London Math. Soc., 1991, 44(2): 351–359.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gardner, R. J., Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 1994, 342: 435–445.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gardner, R. J., A positive answer to the Busemann-petty problem in three dimensions, Annals of Math., 1994, 140: 435–447.

    Article  MATH  Google Scholar 

  14. Grinberg, E. L., Isoperimetric inequalities and identities fork-dimensional cross-sections of convex bodies, Math. Ann., 1991, 291: 75–86.

    Article  MathSciNet  Google Scholar 

  15. Goodey, P., Schneider, R., Weil, W., On the determination of convex bodies by projection functions, Bull. London Math. Soc., 1997, 29: 82–88.

    Article  MATH  MathSciNet  Google Scholar 

  16. Lutwak, E., Intersection bodies and dual mixed volumes, Adv. Math., 1988, 71: 232–261.

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, G., Centered bodies and dual mixed volumes, Trans. Amer. Soc., 1994, 345: 777–801.

    Article  MATH  Google Scholar 

  18. Zhang, G., Dual Kinematic formulas, Trans. Amer. Soc., 1999, 351: 985–995.

    Article  MATH  Google Scholar 

  19. Ren, D. L., An Introduction to Integral Geometry (in Chinese), Shanghai: Science and Technology Press, 1988.

    Google Scholar 

  20. Burago, Y. D., Zalgaller, V. A., Geometric Inequalities, Heidelberg: Springer-Verlag, 1988.

    MATH  Google Scholar 

  21. Brascamp, H. J., Lieb, H. J., Best constants in Young’s inequality, its converse and Its generalization to more than three functions, Adv. Math., 1976, 20: 151–173.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kawashima, T., Polytopes which are orthogonal projections of regular simplexes, Geom. Dedicata, 1991, 38: 73–85.

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang, L., Zhang, J. Z., Pseudo-symmetric point set and geometric inequalities, Acta Math. Sinica, 1986, 6(29): 802–806.

    Google Scholar 

  24. Zhang, J. Z., Yang, L., The equispaced embedding of finite point set in pseudo-Euclidean space, Acta Math. Sinica, 1981, 4(24): 481–487.

    Google Scholar 

  25. Leichtweiβ, K., Konvexe Mengen, Berlin: Springer-Verlag. 1980.

    Google Scholar 

  26. Lutwak, E., Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 1990, 60(3): 365–391.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangsong Leng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, G., Zhang, L. Extreme properties of quermassintegrals of convex bodies. Sci. China Ser. A-Math. 44, 837–845 (2001). https://doi.org/10.1007/BF02880133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02880133

Keywords

Navigation