Skip to main content
Log in

Hot electrons generated by ultra-short pulse laser interacting with solid targets

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Hot electrons produced by ultra-short pulse laser interacting with solid targets were studied systematically. When 800 nm, 8 × 1015 W/cm2 laser pulses interacted with solid targets, hot electron emission was found to be collimated in certain directions and the angular distribution of hot electrons depended on the energy absorption. The angular divergence of outgoing hot electrons was inversely proportional to the hot electron energy. The energy spectrum of hot electrons was found to be in a biMaxwellian distribution and the maximum energy was over 500 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabak, M., Hammer, J., Glinsky, M. E. et al., Ignition and high gain with ultrapowerful lasers, Phys. Plasmas, 1994, 1 (5): 1626.

    Article  Google Scholar 

  2. Wilks, S. C., Kruer, W. L., Tabak, M. et al., Absorption of ultra-intense laser pulses, Phys. Rev. Lett., 1992, 69 (9): 1383.

    Article  Google Scholar 

  3. Rousseaus, C., Amiranoff, F., Labaune, C. et al., Superthermal and relativistic electrons produced in laser-plasma interaction at 0.26, 0.53, and 1.05 μm laser wavelength, Phys. Fluids B, 1992, 4(8): 2589.

    Article  Google Scholar 

  4. Malka, G., Miquel, J. L., Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulses on a solid target, Phys. Rev. Lett., 1996, 77(1): 75.

    Article  Google Scholar 

  5. Malka, G., Lefebvre, E., Miquel, J. L., Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser, Phys. Rev. Lett., 1997,78(17): 3314.

    Article  Google Scholar 

  6. Malka, G., Fuchs, J., Amiranoff, F. et al., Suprathermal electron generation and formation by an ultrarelativistic laser pulse in an underdense preformed plasma, Phys. Rev. Lett., 1997, 79(11) ; 2053.

    Article  Google Scholar 

  7. Kruer, W. L., Estabrook, K., J × B heating by very intense laser light, Phys. Fluids., 1985, 28(1): 430.

    Article  Google Scholar 

  8. Bastiani, S., Rousse, A., Geindre, J. P. et al., Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths, Phys. Rev. E., 1997, 56(6): 7179.

    Article  Google Scholar 

  9. Sentoku, Y., Ruhl, H., Mima, K. et al., Plasma jet formation and magnetic-field generation in the intense laser plasma under oblique incidence, Phys. Plasmas, 1999, 6(7): 2855.

    Article  Google Scholar 

  10. Brunel, F., Not-so-resonant, resonant absorption, Phys. Rev. Lett., 1987, 59(1): 52.

    Article  Google Scholar 

  11. Brunel, F., Anomalous absorption of high intensity subpicosecond laser pulses, Phys. Fluids., 1988, 31(9): 2714.

    Article  Google Scholar 

  12. Rousse, A., Audebert, P., Geindre, J. P. et al., Efficient Kα X-ray source from femtosecond laser-produced plasmas, Phys. Rev. E., 1994, 50(3), 2200.

    Article  Google Scholar 

  13. Fews, A. P., Norreys, P. A., Beg, F. N. et al., Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets, Phys. Rev. Lett., 1994, 73(13): 1801.

    Article  Google Scholar 

  14. Schnurer, M., Kalashnikov, M. P., Nickles, P. V. et al., Hard X-ray emission from intense short pulse laser plasmas, Phys. Plasmas., 1995, 2(8): 3106.

    Article  Google Scholar 

  15. Key, M. H., Cable, M. D., Cowan, T. E. et al., Hot electron production and heating by hot electrons in fast ignitior research, Phys. Plasmas, 1998, 5(5): 1966.

    Article  Google Scholar 

  16. Fowler, J. F., Attix, F. H., Solid State Integrating Dosimeter in Radiation Dosimeter, Vol. 11, 2nd ed., Reading, MA:Addison-Wesley, 1966.

    Google Scholar 

  17. Moore, C. I., Ting, A., McNaught, S. J. et al., A laser-accelerator injector based on laser ionization and ponderomotive acceleration of electrons, Phys. Rev. Lett., 1999, 82(8): 1688.

    Article  Google Scholar 

  18. Estabrook, K., Kruer, W. L., Properties of resonantly heated electron distributions, Phys. Rev. Lett., 1977, 40(l): 42.

    Google Scholar 

  19. Kruer, W. L., The Physics of Laser Plasma Interactions, Reading, MA: Addison-Wesley, 1988, 38.

    Google Scholar 

  20. Fabbro, R., Max, C., Fabro, E., Planar laser-driven ablation: Effect of inhibited electron thermal conduction, Phys. Fluids, 1985, 28(5): 1463.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Zhang, J., Li, Y. et al. Hot electrons generated by ultra-short pulse laser interacting with solid targets. Sci. China Ser. A-Math. 43, 1294–1300 (2000). https://doi.org/10.1007/BF02880066

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02880066

Keywords

Navigation