Skip to main content
Log in

1H MAS NMR characterization of hydrogen over silica-supported rhodium catalyst

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen species in both SiO2 and Rh/SiO2catalysts pretreated in different atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ∼7.0, 3.8–4.0, 2.0 and 1.5–1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2lattice, respectively. Besides the above signals, both upfield signal at ∼−110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ∼−110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be β hydrogen and in a unique form of “delocalized hydrogen”. It was presumed that the β hydrogen had an upfield shift of ca. −20–−50, though its1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the β hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, C. H., Goodwin, J. G., Reversible chemisorption on highly dispersed Ru catalysts, J. Catal., 1982, 78: 182.

    Article  CAS  Google Scholar 

  2. Wu, X., Gerstein, B. C., King, T. S., Characterization of silica-supported ruthenium catalysts by hydrogen chemisorption and nuclear magnetic resonance of adsorbed hydrogen, J. Catal., 1989, 118: 238.

    Article  CAS  Google Scholar 

  3. Root, T. W., Duncan, T. M., Characterization of hydrogen on silica-supported rhodium with1H NMR spectroscopy, Chem. Phys. Lett., 1987, 137(1): 57.

    Article  CAS  Google Scholar 

  4. King, T. S., Wu, X., Gerstein, B. C., Direct evidence for spillover of hydrogen from ruthenium to copper in supported Cu-Ru/SiO2catalysts: a study by NMR of chemisorbed hydrogen, J. Am. Chem. Soc., 1986, 108: 6056.

    Article  CAS  Google Scholar 

  5. Feulner, P., Menzel, D., The adsorption of hydrogen on ruthenium (001), adsorption states, dipole moments and kinetics of adsorption and desorption, Surf. Sci., 1985, 154: 465.

    Article  CAS  Google Scholar 

  6. Conrad, H., Scala, R., Stenzel, W. et al., Adsorption of hydrogen and deuterium on Ru (001), J. Chem. Phys., 1984, 81(12): 6371.

    Article  Google Scholar 

  7. Bhatia, S., Engelke, F., Pruski, M. et al., Interaction of hydrogen with supported Ru catalysts: high pressurein situ NMR studies, J. Catal., 1994, 147: 455.

    Article  CAS  Google Scholar 

  8. Apple, T. M., Gajardo, P., Dybowski, C., NMR, ESR and TPD study of H2 adsorption on Rh/TiO2 catalyst, J. Catal., 1981, 68: 103.

    Article  CAS  Google Scholar 

  9. Apple, T. M., Dybowski, C., Effect of coadsorption of CO on the adsorption of H2 on Rh/TiO2, J. Catal., 1981, 71: 316.

    Article  CAS  Google Scholar 

  10. Sanz, J., Rojo, J. M., Malet, P. et al., Influence of the hydrogen uptake by the support on metal-support interactions in catalysts, Comparison of the Rh/TiO2 and Rh/SrTiO3 systems, J. Phys. Chem., 1985, 89: 5427.

    Article  CAS  Google Scholar 

  11. Miller, J. B., DeCanio, S. J., Michel, J. B. et al., Magnetic resonance study of TiO2, V2O5/TiO2 and V2O5 supported rhodium catalysts, J. Phys. Chem., 1985, 89: 2592.

    Article  CAS  Google Scholar 

  12. DeCanio, S. J., Miller, J. B., Michel, J. B. et al., Electron spin resonance and nuclear magnetic resonance study of the reduction of Rh/TiO2 systems at 298 K, J. Phys. Chem., 1983, 87: 4619.

    Article  CAS  Google Scholar 

  13. Conesa, J. C., Malet, P., Munuera, J. G. et al., Magnetic resonance studies of hydrogen-reduced Rh/TiO2 catalysts, J. Phys. Chem., 1984, 88: 2986.

    Article  CAS  Google Scholar 

  14. Chao, Z. S., Yan, Q. G., Wu, T. H. et al., Mechanistic studies of methane partial oxidation to synthesis gas over SiO2-supported rhodium catalyst, in 12th International Congress on Catalysis (eds. Corma, A., V-Melo, F., Mendioroz, S. et al.), Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 2000, 130: 3555–3560.

    Google Scholar 

  15. Bronnimann, C. E., Zeigler, R. C., Gary, E., Maciel, Proton NMR study of dehydration of the silica gel surface, J. Am. Chem. Soc., 1988, 110(7): 2023.

    Article  CAS  Google Scholar 

  16. Bronnimann, C. E., Chuang, I. S., Hawkins, B. L. et al., Dehydration of silica-aluminas monitored by high-resolution solid-state proton NMR, J. Am. Chem. Soc., 1987, 109(5): 1562.

    Article  CAS  Google Scholar 

  17. Hunger, M., Freude, D., Pfeifer, H. et al., Magic-angle spinning nuclear magnetic resonance studies of water molecules adsorbed on Brønsted- and Lewis-acid sites in zeolites and amorphous silica-aluminas, J. Chem. Soc. Faraday Trans., 1991, 87(4): 657.

    Article  CAS  Google Scholar 

  18. Freude, D., Hunger, M., Pfeifer, H., Study of Brønsted acidity of zeolites using high-resolution proton magnetic resonance with magic-angle spinning, Chem. Phys. Lett., 1982, 91(4): 307.

    Article  CAS  Google Scholar 

  19. Batamack, P., Doremieux-Morin, C., Fraissard, J. et al., Broad-line and high-resolution studies concerning the hydroxonium ion in HSM-5 zeolite, J. Phys. Chem., 1991, 95: 3790.

    Article  CAS  Google Scholar 

  20. Sheng, T. C., Gay, I. D., Proton resornance of hydrogen adsorbed on supported platinum metals, J. Catal., 1982, 77: 53.

    Article  CAS  Google Scholar 

  21. Chang, T. H., Cheng, C. P., Yeh, C. T., Deuterium nuclear magnetic resonance characterization of particle size effect in supported rhodium catalysts, J. Catal., 1992, 138: 457.

    Article  CAS  Google Scholar 

  22. Savargaonkar, N., Khanra, B. C., Pruski, M. et al., Influence of hydrogen chemisorption on the surface composition of Pt-Rh/Al2O3 catalysts, J. Catal., 1996, 162: 277.

    Article  CAS  Google Scholar 

  23. Mate, C. M., Somorjai, G. A., Delocalized quantum nature of hydrogen adsorbed on the Rh (III) crystal-surface, Physical Review B-Condensed Matter, 1986, 34(10): 7417.

    CAS  Google Scholar 

  24. Freude, D., Hunger, M., Pfeifer, H.,1H MAS NMR studies on the acidity of zeolites, Chem. Phys. Lett., 1986, 128(1): 62.

    Article  CAS  Google Scholar 

  25. Lenz, D. H., Conner, W. C. Jr, Fraissard, J. P., Hydrogen spillover on silica III. Detection of spillover by proton NMR, J. Catal., 1989, 117: 281.

    Article  CAS  Google Scholar 

  26. Dmitriev, R. V., Detjuk, A. N., Minachev, C. M. et al., Investigation of hydrogen spillover on metal containing catalyst by isotopic exchange, in Spillover of Adsorbed Species (eds. Pajonk, G. M., Teichner, S. J., Germain, J. E.), Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 1983, 17: 17.

    Google Scholar 

  27. Hickman, D. A., Schmidt, L. D., Steps in CH4 oxidation on Pt and Rh surface—High temperature reactor simulation, AICHE J., 1993, 39(7): 1164.

    Article  CAS  Google Scholar 

  28. Dissanayake, D., Rosynek, M. P., Kharras, K. C. C. et al., Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst, J. Catal., 1991, 132: 117.

    Article  CAS  Google Scholar 

  29. Tsang, S. C., Claridge, J. B., Green, M. L. H., Recent advances in the conversion of methane to synthesis gas, Catal. Today, 1995, 23(1): 3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, Z., Wu, T., Ye, J. et al. 1H MAS NMR characterization of hydrogen over silica-supported rhodium catalyst. Sc. China Ser. B-Chem. 44, 103–112 (2001). https://doi.org/10.1007/BF02879742

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879742

Keywords

Navigation