Skip to main content
Log in

Spectroscopic analysis of asymmetric top free radicals

Application to pure rotational spectra of NO2 in the ground vibronic state

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Several key problems involved in the analyses of spectra of asymmetric top molecules, i.e., the effective Hamiltonian, the representation and basis vector, identification of energy levels, the selection rules, the relative intensity, and Zeeman tuning rate, were elucidated systematically. Introducing the high-order centrifugal distortion terms into the effective Hamiltonian, the precision for calculation has been improved substantially, which allows us to analyze the high-lying rotational transitions. A global analysis of all available spectra of14N16O2 in the ground vibronic state has been made to obtain a set of molecular constants of14N16O2 in the ground vibronic state which is the most precise and extensive so far. Using the improved parameters, some FIR LMR lines left unassigned hitherto have been identified successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sears, T. J., The calculation of the energy levels of an asymmetric top free radical in a magnetic field, Comput. Phys. Rep., 1984, 2: 1.

    Article  CAS  Google Scholar 

  2. Davies, P. B., Liu, Y., Liu, Z., Far infrared LMR spectra of monobromomethyl radicals, Chem. Phys. Lett., 1993, 214: 305.

    Article  CAS  Google Scholar 

  3. Nolte, J., Wagner, H. G., Sears, T. J. et al., The far-infrared laser magnetic resonance spectrum of CH2F, J. Mol. Spectrosc., 1999, 195: 43.

    Article  CAS  Google Scholar 

  4. Sears, T. J., ASYTOP—A program for detailed analysis of gas phase magnetic resonance spectra of asymmetric top molecules, Comput. Phys. Commun., 1984, 34: 123.

    Article  CAS  Google Scholar 

  5. Papousek, D., Aliev, M. R., Molecular Vibrational Rotational Spectra, Prague: Academia, 1982, 72.

    Google Scholar 

  6. Matsushima, F., Nagase, H., Nakauchi, T. et al., Frequency measurement of pure rotational transitions of H2O, J. Mol. Spectrosc., 1999, 193: 217.

    Article  CAS  Google Scholar 

  7. Bowater, I. C., Brown, J. M., Carrington, A., Microwave spectroscopy of nonlinear free radicals, Proc. R. Soc. Lond. A, 1973, 333: 265.

    Article  CAS  Google Scholar 

  8. Castellano, S., Bothner-by, A. A., Analysis of NMR spectra by least squares, J. Chem. Phys., 1964, 41: 3863.

    Article  CAS  Google Scholar 

  9. Bird, G. R., Microwave spectrum of NO2, J. Chem. Phys., 1956, 25: 1040.

    Article  CAS  Google Scholar 

  10. Bird, G. R., Baird, J. C., Jache, A. W. et al., Microwave spectrum of NO2: fine structure and magnetic coupling, J. Chem. Phys., 1964,40: 3378.

    Article  CAS  Google Scholar 

  11. Lees, R. M., Curl, R. F., Baker, J. G., Millimeter-wavelength microwave spectrum of nitrogen dioxide, J. Chem. Phys., 1966, 45: 2037.

    Article  CAS  Google Scholar 

  12. Baron, P.A., Godfrey, P. D., Harris, D.O., Microwave spectrum of NO2 at 70 GHz, J. Chem. Phys., 1974, 60: 3723.

    Article  CAS  Google Scholar 

  13. Bowman, W. C., De Lucia, F. C., The millimeter and submillimeter spectrum of NO2, J. Chem. Phys., 1982, 77: 92.

    Article  CAS  Google Scholar 

  14. Semmoud-Monnanteuil, N., Colmont, J. M., Perrin, A. et al., New measurements in the millimeter-wave spectrum of NO2, J. Mol. Spectrosc., 1989, 134: 176.

    Article  CAS  Google Scholar 

  15. Baskakov, O. I., Moskienko, M. V., Dyubko, S. F., Submillimeter rotational spectrum of nitrogen dioxide, Opt. Spectrosc. (USSR), 1982, 53:270.

    Google Scholar 

  16. Tanaka, T., English, A. D., Field, R. W. et al., Microwave optical double resonance of NO2 with a tunable cw dye laser, J. Chem. Phys., 1973, 59: 5217.

    Article  CAS  Google Scholar 

  17. Brown, J. M., Steimle, T. C., Coles, M. E. et al., A determination of the spin-rotation parameters forN02, J. Chem. Phys., 1981, 74: 3668.

    Article  CAS  Google Scholar 

  18. Carli, B., Carlotti, M., Mencaraglia, F. et al., The pure rotation spectrum of nitrogen dioxide, Mol. Phys., 1984, 51: 1505.

    Article  CAS  Google Scholar 

  19. Perrin, A., Flaud, J. M., Camy-Peyret, C. et al., The far infrared spectrum of NO2, Mol. Phys., 1988, 63: 791.

    Article  CAS  Google Scholar 

  20. Curl, R. F., Evenson, K. M., Wells, J. S., Laser magnetic spectrum of NO2 at 337 μm and 311 μm, J. Chem. Phys., 1972, 56:5143.

    Article  CAS  Google Scholar 

  21. Burch, D. S., Tanttila, W. H., Mizushima, M., X-band ESR spectrum of nitrogen dioxide, J. Chem. Phys., 1974, 61: 1607.

    Article  CAS  Google Scholar 

  22. Brown, J. M., Sears, T. J., A determination of Zeeman parameters for NO2 in its ground state, Mol. Phys., 1977, 34: 1595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, X., Liu, H. et al. Spectroscopic analysis of asymmetric top free radicals. Sc. China Ser. B-Chem. 44, 7–16 (2001). https://doi.org/10.1007/BF02879730

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879730

Keywords

Navigation