Skip to main content
Log in

Role of trichome ofPteris vittata L. in arsenic hyperaccumulation

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Environmental scanning electron microscope (ESEM) fitted with an energy dispersive X-ray microanalyzer (EDX) was used to investigate the surface micromorphology and arsenic (As) micro-distribution in Chinese brake (Pteris vittata L.). It was found that amounts of trichome, which possessed multicellular structure with the average length of 160 μm and with an average diameter of 28 μm, existed in the frond ofP. vittata, and the density of trichome on the pinnate axial surface was higher than that on the petiole. Visible X-ray peak of As was recorded in the epidermal cell and trichome. The relative weight of As in the pinnate trichome, which contained the highest concentration of As among all tissues of the plant, was 2.4 and 3.9 times as much as that in the epidermal and mesophyllous cells, respectively. The As concentrations in the basal and stalk cells of the same trichome were higher than that in its cap cell. This is the first time to report that the trichome ofP. vittata plays an important role in arsenic hyperaccumulation. The finding from the present study implies that much attention should be paid to the role of the trichome in understanding the hyperaccumulation and detoxicity of As in the hyperaccumulator and improving the ability of As accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, T. B., Wei, C. Y., Huang, Z. C. et al., Arsenic hyperaccumulatorPteris vittata L. and its arsenic accumulation, Chinese Science Bulletin, 2002, 47(11): 902–905.

    Article  CAS  Google Scholar 

  2. Chen, T. B., Wei, C. Y., A method to remediate arsenic contaminated soils, 2001, China Patent No. CN01120519.9.

  3. Liao, X. Y., Chen, T. B., Xie, H. et al., Effect of application of P fertilizer on efficiency of As removal from As-contaminated soil using phytoremediation: Field study, Acta Scientiae Circumstantiae (in Chinese), 2004, 24(3): 455–462.

    CAS  Google Scholar 

  4. Webb, S. M., Gaillard, J. F., Ma, L. Q. et al., XAS speciation of arsenic in a hyperaccumulating fern, Environmental Science & Technology, 2003, 37: 754–760.

    Article  CAS  Google Scholar 

  5. Zhao, F. J., Dunham, S. J., McGrath, S. P., Arsenic hyperaccumulation by different fern species, New Phytologist, 2002, 156: 27–31.

    Article  CAS  Google Scholar 

  6. Wang, J. R., Zhao, F. J., Meharg, A. A. et al., Mechanisms of arsenic hyperaccumulation inPteris vittata. uptake kinetics, interactions with phosphate, and arsenic speciation, Plant Physiology, 2002, 130: 1552–1561.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, W., Cai, Y., Tu, C. et al., Arsenic speciation and distribution in an arsenic hyperaccumulating plant, The Science of the Total Environment, 2002, 300: 167–177.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, T. B., Huang, Z. C., Huang, Y. Y. et al., Cellular distribution of arsenic and other elements in hyperaccumulatorPteris nervosa and their relations to arsenic accumulation, Chinese Science Bulletin, 2003, 48(11): 1163–1168.

    Article  Google Scholar 

  9. Lombi, E., Zhao, F. J., Fuhrmann, M. et al., Arsenic distribution and speciation in the fronds of the hyperaccumulatorPteris vittata, New Phytologist, 2002, 156: 195–203.

    Article  CAS  Google Scholar 

  10. Liang, Y. C., Ding, R. X., Influence of silicon on micro-distribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants, Science in China, Ser. C, 2002, 45(3): 298–308.

    Article  CAS  Google Scholar 

  11. Ranger, C. M., Hower, A. A., Glandular morphology from a perennial alfalfa clone resistant to the potato leafhopper, Crop Science, 2001, 41: 1427–1435.

    Google Scholar 

  12. Liao, X. Y., Chen, T. B., Lei, M. et al., Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils, Plant and Soil, 2004, 261: 109–116

    Article  CAS  Google Scholar 

  13. Wagner, G. J., Wang, E., Shepherd, R. W. et al., New approaches for studying and exploiting an old protuberance, the plant trichome, Annals of Botany, 2004, 93: 3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Wagner, G. J., Secreting glandular trichomes: More than just hairs, Plant Physiology, 1991, 96: 675–679

    Article  PubMed  CAS  Google Scholar 

  15. Bao, W. M., Wang, Q. X., Ao, Z. W., Studies on the development of gametophytes of ferns from north-eastern China: VIII aspleniaceae, Bulletin of Botanical Research (in Chinese), 1995, 15(1): 61–64.

    Google Scholar 

  16. Zeng, H. Y., Ding, B. Y., Studies on the gametophytes development in ferns, Bulletin of Botanical Research (in Chinese), 2003, 23(2): 154–158.

    Google Scholar 

  17. Nishida, R., Kawai, K., Amano, T. et al., Pharmacophagous feeding stimulant activity of neo-clerodane diterpenoids for the turnip sawfly,Athalia rosae ruficornis, Biochemical Systematics and Ecology, 2004, 32(1): 15–25.

    Article  CAS  Google Scholar 

  18. Urzúa, A., Contreras, R., Jara, P. et al., Comparative chemical composition of the trichome secreted exudates and of the waxy coating fromHaplopappus velutinus, H. illiniyus, H. schumanni andH. uncinatus, Biochemical Systematics and Ecology, 2004, 32(2): 215–218.

    Article  CAS  Google Scholar 

  19. Huang, Z. C., Chen, T. B., Lei, M. et al., EXAFS study on arsenic species and transformation in arsenic hyperaccumulator, Science in China, Ser. C, 2004, 47 (2): 124–129.

    Article  CAS  Google Scholar 

  20. Psaras, G. K., Constantinidis, T. H., Cotsopoulos, B. Y., Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: Evidence that the metal is excluded from both guard cells and trichomes, Annals of Botany, 2000, 86(1): 73–78.

    Article  CAS  Google Scholar 

  21. Cha, Y. E., Harada, E., Wada, M. et al., Detoxification of cadmium in tobacco plants: formation and active excretion of crystal containing cadmium and calcium through trichome, Planta, 2001, 213: 45–50.

    Article  Google Scholar 

  22. Ager, F. J., Ynsa, M. D., Domínguez, J. R. et al., Nuclear micro-probe analysis ofArabidopsis thaliana leaves, Nuclear Instruments and Methods in Physics Research Section B: Beam Interaction with Materials and Atoms, 2003, 210: 401–406.

    Article  CAS  Google Scholar 

  23. Meharg, A. A., Hartley-Whitaker, J., Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species, New Phytologist, 2002, 154: 29–43.

    Article  CAS  Google Scholar 

  24. Meharg, A. A., Naylaor, J., Macnair, M. R., Phosphorus nutrition of arsenate-tolerate and nontolerate phenotypes of velvetgrass, Journal of Environmental Quality, 1994, 23(2): 234–238.

    Article  CAS  Google Scholar 

  25. Meharg, A. A., Macnair, M. R., An altered phosphate uptake system in arsenate-tolerateHolcua lantus L., New Phytologist, 1990, 116(1): 29–35.

    Article  CAS  Google Scholar 

  26. Meharg, A. A., Macnair, M. R., Suppression of the high affinity phosphate uptake system: A mechanism of arsenate tolerance inHolcua lantus L., Journal of Experimental Botany, 1992, 43(249): 519–524.

    Article  CAS  Google Scholar 

  27. Carbonell, A. A., Aarabi, M. A., Delaune, R. D. et al., Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition, The Science of the Total Environment, 1998, 217(3): 189–199.

    Article  CAS  Google Scholar 

  28. Lambkin, D. C., Alloway, B. J., Arsenate-induced phosphate release from soils and its effect on plant phosphorus, Water, Air and Soil Pollution, 2003, 144(1): 41–56.

    Article  CAS  Google Scholar 

  29. Chen, T. B., Fan, Z. L., Lei, M. et al., Effect of phosphorus on arsenic accumulation in As-hyperaccumulatorPteris vittata L. and its implication, Chinese Science Bulletin, 2002, 47(22): 1876–1879.

    Article  CAS  Google Scholar 

  30. Tu, C., Ma, L. Q., Effects of arsenate and phosphate on their accumulation by arsenic-hyperaccumulatorPteris vittata L., Plant and Soil, 2003, 249: 373–382.

    Article  CAS  Google Scholar 

  31. Zhu, W., Gan, S. Y., Characteristics and X-ray of ESEM, Vacuum Electronics (in Chinese), 2000, 6: 21–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongbin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Chen, T., Chen, Y. et al. Role of trichome ofPteris vittata L. in arsenic hyperaccumulation. Sci. China Ser. C.-Life Sci. 48, 148–154 (2005). https://doi.org/10.1007/BF02879667

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879667

Keywords

Navigation