Skip to main content
Log in

Raman spectroscopic study on structure of human immunodeficiency virus (HIV) and hypericin-induced photosensitive damage of HIV

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The first Raman spectra of HIV1-HIV2 in human sera and hypericin-induced photosensitive damage of the virus have been obtained. The prominent Raman lines in the spectra are assigned respectively to the carbohydrates of viral glycoprotein, RNA, protein and lipid. The spectra are dominated by Raman scattering of the carbohydrates. The lines of D-Mannose and N-acetylglucosamine in carbohydrates are obvious and there is a β-configuration in the anomeric C1 position in D-Mannose. The viral RNA duplexes bound assumes an A-form geometry. The lines of backbone phosphate group, bases (involving interbase hydrogen bonding) and ribose of the RNA are complete and distinct. The secondary structure of the viral protein maintains α-helix, β-sheet, β-turn and random coil. Its side chains are rich and vary from tryptophan, phenylalanine and “buried” tyrosine; the stable conformation of the S-S bond of gauche-gauche-gauche; the two forms of C-S bonds of gauche and trans; to sulfhydrl group and ionized and unionized carboxyl groups. The viral lipid bilayer molecules are probably in the liquid ordered phase or the gel phase. It was observed that the hypericin-induced photosensitive damage of HIV1-HIV2 in human sera changed various components of HIV1-HIV2 in different degrees: The orderly A-form viral RNA would become a disordered viral RNA. There were a breakage of interbase hydrogen bonds and disruption of vertical base-base stacking interactions. In addition, the groups of ribos and four bases were damaged obviously. A decrease in ordered structure (α-helix and β-sheet) of viral protein is accompanied by an increase in random coil. The Tyr buried in the three-dimensional structure of protein was damaged, but it was still “buried” and the damage of C-S bond of trans form was stronger. The groups of carbohydrates, including D-Mannos and N-acetyl glucosamine, in viral envelope glycoprotein had also been changed. The hydrophilic C-N bond of choline in viral lipid was damaged, which was the possible binding site to hypericin, whereas the viral lipids bilayers were still probably in the liquid ordered phase or the gel phase. So the space structure of HIV1-HIV2 was damaged under the experimental conditions, which might block viral infection and inhibit its growth and breeding. It is apparent that the laser Raman spectra have provided certain direct evidence at the molecular level for photosensitive damage of HIV1-HIV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, G. J. Jr., Applications of Raman spectroscopy in structural studies of viruses, nucleoproteins and their constituents, in Spectroscopy of Biological Systems (eds. Clark, R. J. H., Hester, R. E.), Vol. 13, New York: John Wiley & Sons, 1986, 233–303.

    Google Scholar 

  2. Thomas, G. J. Jr., Viruses and Nucleoproteins, in Biological Applications of Raman Spectroscopy (ed. Spiro, T. G.), Vol. 1, New York: John Wiley & Sons, 1987, 135–201.

    Google Scholar 

  3. Xu, Y. M., Lu, C. Z., Raman spectroscopic study on human immunodeficiency virus (HIV1-HIV2) space structure and microcosmic and photosensitive damage to the virus, Proceedings of the XVth Inteernational Conference on Raman Spectroscopy (eds. Asher, S. A., Stein, P.), August 11–16, 1996, Pittsburgh, PA, USA, New York: John Wiley & Sons, Ltd., 490–491.

    Google Scholar 

  4. Coffin, J., Ashley, H., Jay, A. et al., What to call the AIDS virus? Nature, 1986, 321: 10.

    PubMed  CAS  Google Scholar 

  5. Weiss, R. A., How does HIV cause AIDS ? Science, 1993, 260: 1273–1279.

    Article  PubMed  CAS  Google Scholar 

  6. Gallo, R. C., Montagnier, L., AIDS in 1988, Sci. Am., 1988, 259: 25–32.

    Google Scholar 

  7. Greene, W. C., AIDS and the immune system, Sci. Am., 1993, 269: 67–73.

    Article  Google Scholar 

  8. Haseltine, W. A., Wong, S. F., The molecular biology of the AIDS virus, Sci. Am., 1988, 259: 34–42.

    Article  Google Scholar 

  9. McDougal, J. S., Kennedy, M. S., Sligh, J. M. et al., Binding of HTLV-III/LAV to T4+ T cell by a complex of the 110 K viral protein, Science, 1986, 31: 382–385.

    Article  Google Scholar 

  10. Klatzmann, D., Champagne, E., Chamaret, S. et al., T-lymphocyte T4 molecule behaves as the resepto for human retrovirus, Nature, 1984, 312: 767–768.

    Article  PubMed  CAS  Google Scholar 

  11. Greene, W. C., The molecular biology of human imunodeficincy virus type 1 infection, N.E.J. Med., 1991, 324: 308–317.

    CAS  Google Scholar 

  12. Pantaleo, G., Graziosi, C., Demarest, J. F. et al., HIV infection is active and pogressive in lymphoid tissue during the clinically latent stage of disease, Nature, 1993, 362: 355–358.

    Article  PubMed  CAS  Google Scholar 

  13. Feinberg, M. B., Greene, W. C., Molecular insights into human immunodeficiency virus type-1 pathogenesis, Curr. Opin. in Immun., 1992, 4: 466–474.

    Article  CAS  Google Scholar 

  14. Cheng, Li, in Medical and Molecular Virology (ed. Wen, Y. M.), Beijing: People’s and Medical Press, 1990, 193–202.

    Google Scholar 

  15. Wang, X. Z., Medical Virology Basis, Fundamental Techniques & Methods, Beijing: Academy Press, China, 1987, 34–44.

    Google Scholar 

  16. Feizi, T., Larkin, M., AIDS and glycosylation, Glycobiology, 1990, 1: 17–23.

    Article  PubMed  CAS  Google Scholar 

  17. Chau, S. N., Ho, D. D., Sun, C. R. Y. et al., Generation and characterization of monoclonal antibodies to the putative CD4-binding domain of human immunodeficiency virus type 1 gp120, J. Virol., 1989, 63: 3579–3585.

    Google Scholar 

  18. Richards, A. D., Phylip, L. H., Farmerie, W. G. et al., Sensitive, soluble chromogenic substrates for HIV-1 protease, J. Biol. Chem., 1990, 265: 7733–7736.

    PubMed  CAS  Google Scholar 

  19. Cohen, J., Weiee, R. A., Bloom, B. R. et al., The new face of AIDS, Science, 1996, 272: 1855–1890.

    Article  Google Scholar 

  20. Ho, D. D., Kaplan, J. C., Rackauskas, I. E. et al., Second conserved domain of gp120 is important for HIV infectivity and antibody neutralization, Science, 1988, 239: 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  21. Rusche, J. R., Javaherian, K., McDanal, C. et al., Antibodies that inhibit fusion of human immunodeficiency virus-ifected cells bind a 24-amino acid sequence of the viral envelope, gp120, Proc. Natl. Acad. Sci., USA, 1988, 85: 3198–3202.

    Article  PubMed  CAS  Google Scholar 

  22. Kowalski, M., Potz, J., Basiripour, L. et al., Functional regions of the envelope glycoprotein of human immunodeficicncy virus type 1, Science, 1987, 237: 1351–1355.

    Article  PubMed  CAS  Google Scholar 

  23. Gelderblom, H. R., Hausmann, E. H. S., Ozel, M. et al., Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins, Virology, 1987, 156: 171–176.

    Article  PubMed  CAS  Google Scholar 

  24. Veronese, F. M., DeVico, A. L., Copeiand, T. D. et al., Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene, Science, 1985, 229: 1402–1405.

    Article  PubMed  CAS  Google Scholar 

  25. Darke, P. L., Leu, C. T., Davis, L. J., Human immunodeficiency virus protease, J. Biol. Chem., 1989, 264: 2307–2312.

    PubMed  CAS  Google Scholar 

  26. Larder, R. A., Purifoy, D. J. M., Powell, K. L. et al., Structural studies of the acquired immunodeficiency syndrome virus reverse transcriptase, Am. J. Med., 1988, 85: 173–175.

    PubMed  CAS  Google Scholar 

  27. Hartman, K. A., Clayton, N., Thomas, G. J. Jr., Studies of virus structure by Raman spectroscopy I. R17 virus and R17 RNA, Biochem. Biophys. Res. Commun., 1973, 50: 942–949.

    Article  CAS  Google Scholar 

  28. Thomas, G. J. Jr., Prescott, B., Studies of virus structure by laser-Raman spectroscopy (II): MS2 phage, MS2 capsids and MS2 RNA in aqueous solutions, J. Mol. Biol., 1976, 102: 103–124.

    Article  PubMed  CAS  Google Scholar 

  29. Frankel, A. D., Young, J. A. T., HIV-1: Fifteen Proteins and an RNA, Annu. Rev. Biochem., 1998, 67: 1–25.

    Article  PubMed  CAS  Google Scholar 

  30. Marx, J. L., AIDS drugs — coming but not have, Science, 1989, 244: 287.

    Article  PubMed  CAS  Google Scholar 

  31. Holden, C., Treating AIDS with worts, Science, 1991, 25: 522.

    Google Scholar 

  32. Schinazi, R. F., Chu, C. K., Babu, J. R. et al., Antraquionones as a class of antiviral agents against human immunodeficiency virus, Antiviral Res., 1990, 13: 265–272.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi, I., Nakanishi, S., Kobayashi, E. et al., Hypericin and pseudohypericin specifically inhibit protein kinase C: Possible relation to their anti-retroviral activity, Biochem. Biophys. Res. Commun., 1989, 165: 1207–1212.

    Article  CAS  Google Scholar 

  34. Diwu, Z., Zimmlermaun, J., Meyer, T. et al., Design, synthesis and investigation of mechanisms of action of novel protein kinase C inhibitors: Perylenequinonoid pigments, Biochem. Pharmacol., 1994, 47: 373–385.

    Article  PubMed  CAS  Google Scholar 

  35. Lenard, J., Rabson, A., Stevenson, N. R. et al., Photodynamic inactivation of viral fusion and infectivity by hypericin and rose bengal: Effects on HIV and other enveloped virus, J. Cell. Biochem., 1993, 17 E-F, 17.

    Google Scholar 

  36. Lenard, J., Rabson, A., Vanderoef, R., photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped virus using hypericin and rose Bengal: Inhibition of fusion and syncytia formation, Proc. Natl. Sci. USA, 1993, 90: 158–162.

    Article  CAS  Google Scholar 

  37. Fields, A. P., Bednarik, D. P., Hess, A. et al., Human immunodeficiency virus induces phosphorylation of its cell surface receptor, Nature, 1988, 333: 278–280.

    Article  PubMed  CAS  Google Scholar 

  38. Degar, S., Prince, A. M., Pascual, D. et al., Inactivation of the human immunodeficiency virus by hypericin: evidence for photochemical alterations of p24 and ablock in uncoating, AIDS Res. Hum. Retroviruses, 1992, 8: 1929–1936.

    PubMed  CAS  Google Scholar 

  39. Meruelo, D., Lavie, G., Lavie, D., Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin, Proc. Natl. Acad. Sci. USA, 1988 85: 5230–5234.

    Article  PubMed  CAS  Google Scholar 

  40. Diwu, Zhenjun, Novel therapeutic and diagnostic applications of hypocrellins and hypericins, Photochem. and Photobiol., 1995, 61: 529–539.

    CAS  Google Scholar 

  41. Lopez-Bazzocch, I., Hudson, J. B., Towers, G. H. N., Antiviral activity of the photoactive plant pigment hypericin, Photochem. and Photobiol., 1991, 54: 95–98.

    Article  Google Scholar 

  42. Hudson, J. B., Lmperial, V., Haugland, R.P., Diwu, Z., Antiviral activities of photoactive perylenequinones, Photochemistry and Photobiology, 1997, 65: 352–354.

    Article  PubMed  CAS  Google Scholar 

  43. Hudson, J. B., Harris, L., Towers, G. H. N., The importance of light in the anti-HIV effect of hypericin, Antivival Res., 1993, 20: 173–178.

    Article  CAS  Google Scholar 

  44. Meruelo, D., Prince, A. M., Pascual, D. et al., The potential use of hypericin as inactivator of retroviruses and other viruses in blood products, Blood, 1993, 82: 205A.

    Google Scholar 

  45. Dougherty, T. J., Photodynamic therapy, Photochemistry and Photobiology, 1993, 58: 895–900.

    Article  PubMed  CAS  Google Scholar 

  46. Lavie, G. F., Valentine, G., Levin, Y. et al., Studies of the mechanisms on action of the antiretroviral agent hypericin and pseudohypericin, Proc. Natl. Acad. Sci. USA, 1989, 86: 5963–5967.

    Article  PubMed  CAS  Google Scholar 

  47. Lord, R. C., Yu, N. T., Laser-Raman spectroscopy of biomolecules (I): Native lysozyme and its constituent amino acids, J. Mol. Biol., 1970, 50: 509–524.

    Article  PubMed  CAS  Google Scholar 

  48. Carey, P. R., Biochemical Applications of Raman and Resonance Raman Spectroscopies, New York: Harcout Brace Jovanovich, 1982, 71–98.

    Google Scholar 

  49. Zhang, Z. Y., Xu, Y. M., The Molecular of photoporphyrin (YHPD)’s photosensitization, Science in China, Ser. B, 1992, 35: 437–444.

    CAS  Google Scholar 

  50. Koenig, J. L., Infrared and Raman Spectroscopy of Biological Molecules (ed. Theophanides, M. T.), Holland: NATO Scientific Affairs Division, 1979, 109–125, 125–137.

    Google Scholar 

  51. Parker, F. S., Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, New York: Plenum Press, 1983, 315–347.

    Google Scholar 

  52. Zhao, H., Xu, Y. M., Lu, C. Z., Raman spectroscopic study of D-Mannose after the photosensitive damage caused by hypericin, Int. Asian J. of Spctroscopy, 1997, 1: 71–76.

    CAS  Google Scholar 

  53. Krimm, S., Bandekar, J., Vibrational analysis of peptides, polypeptides, and proteins V, Normal vibrations of ß-turn, Biopolymers, 1980, 19: 1–29.

    Article  PubMed  CAS  Google Scholar 

  54. Bandekar, J., Krimm, S., Vibrational analysis of peptides, polypeptides, and proteins (VI): Assignment of β-turn modes in insulin and other proteins, Biopolymers, 1980, 19: 31–36.

    Article  PubMed  CAS  Google Scholar 

  55. Thomas, G. J. Jr., Kyogoku Yoshimasa, Biological Science, in Infrared and Raman Spectroscopy, Part C (eds. Bram, E. G. Jr. et al.), New York and Besel: Marcel Dekker, Inc., 1977, 778–782

    Google Scholar 

  56. Tu, A. T., Raman Spectroscopy in Biology: Principles and Applications, New York: John Wiley and Sons, Inc., 1982, 187–205.

    Google Scholar 

  57. Xu, Y. M., Zhao, H. X., Zhang, Z. Y., Raman spectroscopic study of microcosmic and photosensitive damage on the liposomes of the mixed phospholipids sensitized by hypocrellin and its derivatives, Int. J. Photochem. & Photobiol. B: Biol., 1998, 43: 41–46

    Article  CAS  Google Scholar 

  58. Xu, Y. M., Zhang, Z. Y., Zhang, W., Raman spectroscopic characteristics of microcosmic and photosensitive damage on space structure of liposomes sensitized by hypocrellin and its derivatives, Science in China, Ser. C, 1998, 41(5): 460–464.

    Article  Google Scholar 

  59. Xu, Y. M., Yang, H.Y., Zhing, Z. Y., Raman spectroscopic study of space structure of membrane proteins and membrane lipids in photodamaged human erythrocyte sensitized by hypocrellin B, Science in China, Ser. C, 1998, 41(7): 608–616.

    CAS  Google Scholar 

  60. Brown, D. A., London, E., Structure and origin of ordered lipid domains on biological membranes, J. Membrane Biol., 1998, 164: 103–114.

    Article  CAS  Google Scholar 

  61. Brunner, H., Sussner, H., Raman scattering of native and thermally denatured lysozyme, Biochim. Biophys. Acta, 1972, 271: 16–22.

    PubMed  CAS  Google Scholar 

  62. Xu, Y. M., Zhang, Z. Y., Zhao, K. J. et al., Molecular mechanism of high energy proton radiation—Raman spectroscopic character of mirocosmic damage in the space structure of DNA, Science in China, Ser. B, 1993, 36: 1325–1332.

    CAS  Google Scholar 

  63. She, C. Y., Dinh, N. D., Tu, A. T., Laser Raman scattering of glucosamine, N-acetylglucosamine and glucuronic acid, Biochim. Biophys. Acta, 1974, 372: 345–355.

    CAS  Google Scholar 

  64. Kuwabara, M., Zhang, Z. Y., Yosaii, G., E.S.R.of spin trapped radicals in aqueous solutions of Pyrimidine nucleosides and nucleotides, Reaction of the Hydroxyl Radicals Int. J. Radiat, Biol., 1982, 41: 241–259.

    CAS  Google Scholar 

  65. Erfurth, S. C., Peticolas, W. L., Melting and premelting phenomenon in DNA by Laser Raman scattering, Biopolymer, 1975, 14: 247–264.

    Article  CAS  Google Scholar 

  66. Gaber, B. P., Peticalas, W. L., On the quantitative interpretation of biomembrane structure by Raman spectroscopy, Biochim. Biophys. Acta, 1977, 465: 260–274.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Lu, C. Raman spectroscopic study on structure of human immunodeficiency virus (HIV) and hypericin-induced photosensitive damage of HIV. Sci. China Ser. C.-Life Sci. 48, 117–132 (2005). https://doi.org/10.1007/BF02879664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879664

Kewords

Navigation