Skip to main content
Log in

The relationship between the connecting peptide of recombined single chain insulin and its biological function

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

To investigate the relationship between the biological activity of recombined single chain insulin and the length of the connecting peptide, we designed and prepared three single chain insulin molecules, namely, PIP, [A]5PIP and [A]10PIP, by site-directed mutagenesis, in which B30 and A1 were linked through dipeptide A-K, heptapeptide A-A-A-A-A-A-K, and dodecapeptide A-A-A-A-A-A-A-A-A-A-A-K, respectively. Their receptor binding capacities were 0.14%, 14.3% and 11.1% of that of insulin respectively and theirin vivo biological activities were in consistence with their receptor binding capacity; whereas their growth promoting activities were 17%, 116.3% and 38% of that of insulin. These results suggested the following conclusions. (i) The recombined single chain insulin could also possess the same metabolic and mitogenic function as insulin. (ii) The receptor binding capacity of recombined single chain insulin to insulin receptor was closely related to the length and amino acid composition of the connecting peptide and could change from 0 to 100% of insulin depending on the different connecting peptides. This result further illustrated the necessity of B chain C-terminus swaying away from A chain N-terminus when insulin binds to its receptor. (iii) The mitogenic activity of recombined single chain insulin also depended on the length and the amino acid composition of the connecting peptide and was higher than its metabolic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Straus, D. S., Growth-stimulatory of insulinin vitro andin vivo, Endocr. Rev., 1984, 5(2): 356–369.

    PubMed  CAS  Google Scholar 

  2. Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68–72.

    Article  PubMed  CAS  Google Scholar 

  3. Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104–121.

    PubMed  CAS  Google Scholar 

  4. Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473–480.

    Article  CAS  Google Scholar 

  5. King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223–265.

    Google Scholar 

  6. Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes andin vivo andin vitro in rats, J. Biol. Chem., 1985, 260: 13989–13994.

    PubMed  CAS  Google Scholar 

  7. Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425–433.

    Article  PubMed  CAS  Google Scholar 

  8. Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238–241.

    Article  PubMed  CAS  Google Scholar 

  9. Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129–138.

    Article  CAS  Google Scholar 

  10. Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981–986.

    PubMed  CAS  Google Scholar 

  11. Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445–462.

    Article  CAS  Google Scholar 

  12. Cooke, R. M., Harvey, T. S., Camphell, I. D., Solution structure of human insulin-like growth factor I: a nuclear magnetic resonance and restrained molecular dynamics study, Biochemistry, 1991, 30: 5484–5491.

    Article  PubMed  CAS  Google Scholar 

  13. Baker, E. N., Blundell, T. L., Cutfield, J. F. et al., The structure of 2Zn pig insulin crystals at 1.5A resolution, Phil. Trans. R. Soc. Lond., 1988, B 319: 369–456.

    Google Scholar 

  14. Kobayashi, Y., Nishimura, S., Ohkubo, T. et al., Solution structure of human insulin-like growth factor-I (IGF-I), in Peptide 1990 (eds. Giralt, E., Andreu, D.), Leiden: ESCOM Science Publishers B. V., 1991, 565–567.

    Google Scholar 

  15. Wang, P., Cai, R. R., Feng, Y. M. et al., Studies on insulin/IGF-1 hybrid and IGF-1 growth-promoting functional region, IUBMB Life, 2000, 49: 321–325.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, Y. S., Hu, H. M., Cai, R. R. et al., Secretory expression of a single-chain insulin precursor in yeast and its conversion into human insulin, Science in China, Ser. C, 1996, 39(3): 225–233.

    CAS  Google Scholar 

  17. Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  18. Sanger, F., Nicklen, S., Coulson, A. R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 1977, 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  19. Lowrey, O. H., Rosebrough, N. O., Farr, A. L. et al., Protein measurement with the follin-phenol reagent, J. Biol. Chem., 1951, 193:265–275.

    Google Scholar 

  20. Feng, Y. M., Zhu, J. H., Zhang, X. T. et al., Studies on the mechanism of insulin action VIII. The insulin receptor on the membrane of the human placenta, ActaBiochim. Biophys. Sin., 1982, 14: 137–143.

    CAS  Google Scholar 

  21. Chen, H., Feng, Y. M., Hydrophilic Thr can replace the hydrophobic and absolutely conservative A3Val in insulin, Biochim. Biophys. Acta, 1998, 1429: 69–73.

    PubMed  CAS  Google Scholar 

  22. Zhang, X., Xia, S. L., Tomooka, Y. et al., A new assay system for the cell growth promoting effects of insulin and growth factors, Acta Biochim. Biophys. Sin., 1995, 27: 487–492.

    CAS  Google Scholar 

  23. Ma, J. G., Li, M. Y., Zhen, J. M. et al., The role of C-terminus of insulin B chain and the amino group of B29Lys side chain in the growth promoting activities of insulin, Acta Biochim. Biophys. Sin., 1999, 31: 274–278.

    PubMed  CAS  Google Scholar 

  24. Yang, J. T., Wu, C. S., Martinez, H. M., Calculation of protein conformation from circular dichroism, Meth. Enzym., 1986, 130: 208–269.

    Article  PubMed  CAS  Google Scholar 

  25. Mirmira, R. G., Tager, H. S., Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor, Importance of main chain conformation, J. Biol. Chem., 1989, 264: 6349–6354.

    PubMed  CAS  Google Scholar 

  26. Inouye, M., Intramolecular chaperone: the role of the pro-peptide in protein folding, Enzyme, 1991, 45: 314–321.

    PubMed  CAS  Google Scholar 

  27. Murray-Rust, J., McLeod, A. N., Blundell, T. L. et al., Structure and evolution of insulins: Implications for receptor binding, Bioassays, 1992, 14: 325–331.

    Article  CAS  Google Scholar 

  28. Cheng, S. G., Kim, D. Y., Chio, K. D. et al., Human insulin production from a novel miniproinsulin which has high receptor-binding activity, Biochem. J., 1998, 329: 631–635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Liang, Z. & Feng, Y. The relationship between the connecting peptide of recombined single chain insulin and its biological function. Sci. China Ser. C.-Life Sci. 44, 593–600 (2001). https://doi.org/10.1007/BF02879353

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879353

Keywords

Navigation