Skip to main content
Log in

Secretion expression of recombinant glucagon inEscherichia coli

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

A novel approach for the preparation of recombinant human glucagon was described. An expression vector pAGluT, containing phoA promoter, phoA signal peptide and glucagon gene, was constructed by means of genetic engineering.Escherichia coli strain YK537 was transformed with pAGluT. High-level secretory expression of recombinant human glucagon was achieved. The expression yield of recombinant human glucagon was found to be 80 mg/L, approximately 30% of the total proteins in supernatant. The biological activities and the physicochemical properties of the purified recombinant human glucagon were found to be the same as that of native glucagon. In addition, our results suggested that phoA expression system may be suitable for the expression of other small peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollack, C. V. Jr., Utility of glucagon in the emergency department, J. Emerg. Med., 1993, 11(2): 195–205.

    Article  PubMed  Google Scholar 

  2. Hall-Boyer, K., Zaloga, G. P., Chernow, B., Glucagon: hormone or therapeutic agent? Crit. Care Med., 1984, 12(7): 584–589.

    Article  PubMed  CAS  Google Scholar 

  3. Unger, R. H., Role of glucagon in the pathogenesis of diabetes: the status of the controversy, Metabolism, 1978, 27(11): 1691–1709.

    Article  PubMed  CAS  Google Scholar 

  4. Unger, R. H., Orci, L., The essential role of glucagon in the pathogenesis of diabetes mellitus, Lancet, 1975, 1(7897): 14–16.

    Article  PubMed  CAS  Google Scholar 

  5. Unson, C. G., Merrifield, R. B., Identification of an essential serine residue in glucagon: Implication for an active site triad, Proc. Natl. Acad. Sci. USA, 1994, 91(2): 454–458.

    Article  PubMed  CAS  Google Scholar 

  6. Unson, C. G., Gurzenda, E. M., Iwasa, K. et al., Glucagon antagonists: Contribution to binding and activity of the amino-terminal sequencel-5, position 12, and the putative a-helical segment 19–27, J. Biol. Chem., 1989, 264(2): 789–794.

    PubMed  CAS  Google Scholar 

  7. Unson, C. G., Wu, C. R., Fitzpatrick, K. J. et al., Multiple-site replacement analogs of glucagon, A molecular basis for antagonist design, J. Biol. Chem., 1994, 269(17): 12548–12551.

    PubMed  CAS  Google Scholar 

  8. Azizeh, B. Y., Ahn, J. M., Caspari, R. et al., The role of phenylalanine at position 6 in glucagon’s mechanism of biological action: Multiple replacement analogues of glucagon, J. Med. Chem., 1997, 40(16): 2555–2562.

    Article  PubMed  CAS  Google Scholar 

  9. Sturm, N. S., Lin, Y., Burley, S. K. et al., Structure-function studies on positions 17,18 and 21 replacement analogues of glucagon: The importance of charged residues and salt bridges in glucagon biological activity, J. Med. Chem., 1998, 41(15): 2693–2700.

    Article  PubMed  CAS  Google Scholar 

  10. Unson, C. G., Wu, C. R., Cheung, C. P. et al., Positively charged residues at positions 12,17, and 18 of glucagon ensure maximum biological potency, J. Biol. Chem., 1998, 273(17): 10308–10312.

    Article  PubMed  CAS  Google Scholar 

  11. Ishizaki, J., Tamaki, M., Shin, M. et al., Production of recombinant human glucagon in the form of a fusion protein in.Escherichia coli; recovery of glucagon by sequence-specific digestion, Appl. Microbiol. Biotechnol., 1992, 36(4): 483–486.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, D. Y., Shin, N. K., Chang, S. G. et al., Production of recombinant human glucagon inEscherichia coli by a novel fusion protein approach, Biotechnol. Tech., 1996, 10: 669–672.

    CAS  Google Scholar 

  13. Shin, C. S., Hong, M. S., Kim, D. Y. et al., Growth-associated synthesis of recombinant human glucagon and human growth hormone in high-cell-density culturesof Escherichia coli, Appl. Microbiol. Biotechnol., 1998, 49(4): 364–370.

    Article  PubMed  CAS  Google Scholar 

  14. Moody, A. J., Norris, F., Norris, K. et al., The secretion of glucagon by transformed yeast strains, FEBS Lett., 1987, 212(2): 302–306.

    Article  PubMed  CAS  Google Scholar 

  15. Judd, R. C., Electrophoresis of peptides, in Basic protein and peptide protocols (des. Walker, J. M.), New Jersey: Humana Press, 1994, 49–57.

    Chapter  Google Scholar 

  16. Gu, J. L., Zhang, X. T., Labelling of insulin and deshexapeptide insulin with radioactive iodine utilizing a solid phase oxidizer-1,3,4,6 tetrachloro-3α, 6α-diphenylglycoluril, Acta. Biochim. Biophys. Sin. (in Chinese), 1986, 18(3): 277–283.

    CAS  Google Scholar 

  17. Cuatrecasas, P., Isolation of the insulin receptor of liver and fat-cell membranes (detergent-solubilized/[1251] insulin-polyethylene glycol precipitation/sephadex), Proc. Natl. Acad. Sci. USA, 1972, 69(2): 318–322.

    Article  PubMed  CAS  Google Scholar 

  18. Von Heijne, G., Analysis of the distribution of charged residues in the N-terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells, EMBO J., 1984, 3(10): 2315–2318.

    Google Scholar 

  19. Von Heijne, G., Net N-C charge imbalance may be important for signal sequence function in bacteria, J. Mol. Biol., 1986, 192(2): 287–290.

    Article  Google Scholar 

  20. Campion, S. R., Elsasser, E., Chung, R., Amino-terminal charge affects the periplasmic accumulation of recombinant Heregulin/EGF hybrids exported using theEscherichia coli alkaline phosphatase signal sequence, Protein Express Purif, 1997, 10(3): 331–339.

    Article  CAS  Google Scholar 

  21. Gan, R. B., Huang, P. Y., Yuan, Y. et al., High level expression and secretion of hEGF inEscherichia coli, Acta. Biochim. Biophys. Sin. (in Chinese), 1992, 24(6): 587–589.

    CAS  Google Scholar 

  22. Tachibana, K., Yoda, K., Watanabe, S. et al., Secretion of Bacillus subtilis a-Amylase in the periplasmic space ofEscherichia coli, J. Gen. Microbiol., 1987, 133(Pt7): 1775–1782.

    PubMed  CAS  Google Scholar 

  23. Shortle, D., Guanidine hydrochloride denaturation studies of mutant forms of staphylococcal nuclease, J. Cell. Biochem., 1986, 30(4): 281–289.

    Article  PubMed  CAS  Google Scholar 

  24. Graf, L., Craik, C. S., Patthy, A. et al., Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin, Biochemistry, 1987, 26(9): 2616–2623.

    Article  PubMed  CAS  Google Scholar 

  25. Silen, J. L., Frank, D., Fujishige, A. et al., Analysis of prepro-α-lytic protease expression inEscherichia coli reveals that the pro region is required for activity, J. Bacteriol., 1989, 171(3): 1320–1325.

    PubMed  CAS  Google Scholar 

  26. Vasquez, J. R., Evnin, L. B., Higaki, J. N. et al., An expression system for trypsin, J. Cell. Biochem., 1989, 39(3): 265–276.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renbao Gan or Shangquan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, C., Wang, Z., Du, P. et al. Secretion expression of recombinant glucagon inEscherichia coli . Sci. China Ser. C.-Life Sci. 44, 233–240 (2001). https://doi.org/10.1007/BF02879330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879330

Keywords

Navigation