Skip to main content
Log in

A pure quantum mechanical theory of parity effect in tunneling and evolution of spins

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

In recent years, the spin parity effect in magnetic macroscopic quantum tunneling has attracted extensive attention. Using the spin coherent-state path-integral method it is shown that if the HamiltonianH of a single-spin system hasM - fold rotational symmetry around z-axis, the tunneling amplitude 〈−S|eHt|S〉 vanishes when S, the quantum number of spin, is not an integer multiple ofM/2, where |m〉 (m=-S, -S +1, ⋯, S) are the eigenstates of Sz. Not only is a pure quantum mechanical approach adopted to the above result, but also is extended to more general cases where the quantum system consists ofN spins, the quantum numbers of which can take any values, including the single-spin system, ferromagnetic particle and antiferromagnetic particle as particular instances, and where the states involved are not limited to the extreme ones. The extended spin parity effect is that if the Hamiltonian ℋ of the system ofN spins also has the above symmetry, then 〈mNm2 m1|eHt|m 1 m 2m N vanishes when ∑ N i=1 (m im1) not an integer multiple ofM, where |m 1 m 2m N〉=∏ Nα=1 |m a 〉 are the eigenstates of S za . In addition, it is argued that for large spin the above result, the so-called spin parity effect, does not mean the quenching of spin tunneling from the direction of ⊕-z to that of ±z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamp, P. C. E., Chudnovsky, E. M., Barbara, B., Quantum tunneling of magnetization in solids,Int. J. Mod. Phys., 1992, 6: 1355.

    Article  Google Scholar 

  2. Li, B. Z., Zhong, W. D., Magnetic macroscopic quantum effects, inAspects of Modern Magnetism (ed. Pu, F. C.), Singapore: World Scientific, 1996, 57–71.

    Google Scholar 

  3. Gunther, I., Barbara, B., eds.,Quantum Tunneling of Magnetization-QTM ’94, Dordrecht: Kluwer Acad. Pub., 1998.

    Google Scholar 

  4. Von Delft, J., Henley, C. L., Destructive quantum interference in spin tunneling problems,Phys. Rev. Lett., 1992, 69: 3236.

    Article  Google Scholar 

  5. Loss, D., DiVincenzo, D. P, Grinstein, G., Suppression of tunneling by interference in half-integer-spin particles,Phys. Rev. Lett., 1992, 69: 3232.

    Article  Google Scholar 

  6. Chudnovsky, E. M., DiVincenzo, D. P., Quantum interference in small magnetic particles,Phys. Rev., Ser. B, 1993, B48: 10548.

    Article  Google Scholar 

  7. Garg, A., Dissipation and interference effects in macroscopic magnetization tunneling and coherence,Phys. Rev., Ser. B, 1998, 51: 15161.

    Article  Google Scholar 

  8. Garg, A., Topologically quenched tunnel splitting spin systems without Kramers’ degeneracy,Europhys. Lett., 1993, 22: 205.

    Article  Google Scholar 

  9. Wang, X. B., Pu, F. C., Interference in spin tunneling of small magnetic particles,J. Phys.: Condens. Matter, 1996, 8: L541.

    Article  Google Scholar 

  10. Wang, X. B., Pu, F. C., An effective-Hamiltonian approach to the study of the interference effect in macroscopic magnetic coherence,J. Phys.: Condens. Matter, 1997, 9: 693.

    Article  Google Scholar 

  11. Braun, H. B., Loss, D., Berry’s phase and quantum dynamics of ferromagnetic solitons,Phys. Rev., 1996, B53: 3237.

    Google Scholar 

  12. Loss, D., DiVincenzo, D. P., Grinstein, G. et al., Quantum tunneling and dissipation in nanometer-scale magnets,Physica, Ser. B, 1993, B189: 189.

    Article  Google Scholar 

  13. Weigert, S., Topologically quenched tunnel splitting in a spin system obtained from quantum-mechanical perturbation theory,Europhys. Lett., 1994, 26: 561.

    Article  Google Scholar 

  14. Awschalom, D. D., Smyth, J. F., Grinstein, G. et al., Macroscopic quantum tunneling in magnetic proteins,Phys. Rev. Lett., 1992, 68: 3092.

    Article  Google Scholar 

  15. Wernsdorfer, W., Orozco, E. B., Hasselback, K. et al., Experimental evidence of the Néel-Brown model of magnetization reversal,Phys. Rev. Lett., 1997, 78: 1791.

    Article  Google Scholar 

  16. Zeng, J. Y.,Quantum Mechanics, Vol. 2 (in Chinese), Beijing: Science Press, 1982, 394–397.

    Google Scholar 

  17. Garg, A., Kim, G. H., Dissipation in macroscopic magnetization tunneling,Phys. Rev. Lett., 1989, 63: 2512.

    Article  Google Scholar 

  18. Garg, A., Dissipation in macroscopic quantum tunneling and coherence in magnetic particles,J. Appl. Phys., 1994, 76: 6168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 19674002, 19677101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Wu, J., Zhong, W. et al. A pure quantum mechanical theory of parity effect in tunneling and evolution of spins. Sci. China Ser. A-Math. 41, 301–307 (1998). https://doi.org/10.1007/BF02879049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879049

Keywords

Navigation