Skip to main content
Log in

Existence of almost periodic solutions of second order neutral delay differential equations with piecewise constant argument

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

By constructing almost periodic sequence solutions to difference equations, the existence of almost periodic solutions of neutral delay differential equations with piecewise constant argument

$$\frac{{d^2 }}{{dt^2 }}(x(t) + px(t - 1)) = qr\left( {2\left[ {\frac{{t + 1}}{2}} \right]} \right) + g{\bf{ }}(t,x(t),x([t]))$$

is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papaschinopoulos, G., Schinas, J., Some results concerning second and third neutral delay differential equations with piecewise constant argument,Czechoslovak Math. J., 1994, 44: 501.

    MATH  MathSciNet  Google Scholar 

  2. Cooke, K. L., Wiener, J., Retarded differential equations with piecewise constant delays,J.Math. Anal. Appl., 1984, 99: 265.

    Article  MATH  MathSciNet  Google Scholar 

  3. Shah, S. M., Wiener, J., Advanced differential equations with piecewise constant argument deviations,Internal. J. Math. Math. Soc, 1983, 6: 671.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cooke, K. L., Wiener, J., A survey of differential equation with piecewise continuous argument, inLecture Notes in Mathematics, (eds. Busenberg, S., Martelli, M.), Vol.1475, Berlin: Springer-Verlag, 1991, 1–15.

    Google Scholar 

  5. Papaschinopoulos, G., On asymptotic behavior of the solutions of a class of perturbed differential equations with piecewise constant argument,J.Math. Anal. Appl., 1994, 185: 490.

    Article  MATH  MathSciNet  Google Scholar 

  6. Yuan, R., Hong, J., The existence of almost periodic solution for a class of differential equations with piecewise constant argument,Nonlinear Analysis, TMA, 1997, 28(8): 1437.

    MathSciNet  Google Scholar 

  7. Yuan, R., Hong, J., Almost periodic solutions of differential equations with piecewise constant argument,Analysis, 1996, 16: 171.

    MATH  MathSciNet  Google Scholar 

  8. Yuan, R., Hong, J., The existence of almost periodic solutions of neutral differential equations with piecewise constant argument,Sci. in China, Ser. A, 1996, 39(11): 1164.

    MATH  MathSciNet  Google Scholar 

  9. Aftabizadeh, A. R., Wiener, J., Xu, J. M., Oscillatory and periodic solutions of delay differential equations with piecewise constant argument,Proc. Anier. Math. Soc., 1987, 99: 673.

    Article  MATH  MathSciNet  Google Scholar 

  10. Busenberg, S., Cooke, K. L., Models of vertically transmitted diseases with sequential continuous dynamics, inNonlinear Phenomena in Mathematical Sciences (ed. Lakshmikantham V.), New York: Academic Press, 1982, 179–187.

    Google Scholar 

  11. Wiener, J.,Generalized Solutions of Functional Differential Equations, Singapore: World Scientific, 1993.

    MATH  Google Scholar 

  12. Fink, A. M., Almost periodic differential equations, inLecture Notes in Mathematics, Vol.377, Berlin: Springer-Verlag, 1974.

    Google Scholar 

  13. Meisters, G. H., On almost periodic solutions of a class of differential equations,Proc. Amer. Math. Soc., 1959, 10: 113.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, R. Existence of almost periodic solutions of second order neutral delay differential equations with piecewise constant argument. Sci. China Ser. A-Math. 41, 232–241 (1998). https://doi.org/10.1007/BF02879041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879041

Keywords

Navigation