Antibiotics produced by fungi

This is a preview of subscription content, access via your institution.

Literature Cited

  1. 1.

    Abraham, E. P. The effect of mycophenolic acid on the growth ofStaphylococcus aureus in heart broth. Biochem. Jour.39 398–408. 1945.

    CAS  Google Scholar 

  2. 2.

    Ainsworth, G. C. andBisby, G. R. A dictionary of the fungi. 2nd ed. 1945.

  3. 3.

    Alsberg, C. L. andBlack, G. R. Contributions to the study of maize deterioration; biochemical and toxicological investigations ofPenicillium puberulum andPenicillium stoloniferum. U. S. Dept. Agr. Bur. Pl. Ind., Bul.270: 1–47. 1913.

    Google Scholar 

  4. 4.

    Anchel, M. et al. Antibiotic substances from Basidiomycetes. III.Coprinus similis andLentinus degener. Proc. Nat. Acad. Sci. (Wash.)34: 498–502. 1948.

    Google Scholar 

  5. 4a.

    et al. Antibiotic substances from Basidiomycetes. VII.Clitocybe illudens. Proc. Nat. Acad. Sci. (Wash.)36: 300–305. 1950.

    Google Scholar 

  6. 5.

    Anslow, W. K. andRaistrick, H. Studies in the biochemistry of microorganisms. 19. 6-hydroxy-2-methylbenzoic acid, a product of the metabolism of glucose byPenicillium griseofulvum Dierckx. Biochem. Jour.25: 39–44. 1931.

    Google Scholar 

  7. 6.

    — and — Studies in the biochemistry of microorganisms. 57. Fumigatin and spinulosin, metabolic products, respectively, ofAspergillus fumigatus Fresenius andPenicillium spinulosum Thom. Biochem. Jour.32: 687–696. 1938.

    Google Scholar 

  8. 7.

    — and — Studies in the biochemistry of microorganisms. 58. Synthesis of spinulosin (3∶6-dihydroxy-4-methoxy-2∶5-toluquinone), a metabolic product ofPenicillium spinulosum Thom. Biochem. Jour.32: 803–806. 1938.

    Google Scholar 

  9. 8.

    — and — Studies in the biochemistry of microorganisms. 59. Spinulosin (3∶6-dihydroxy-4-methoxy-2∶5-toluquinone) a metabolic product of a strain ofAspergillus fumigatus Fresenius. Biochem. Jour.32: 2288–2289. 1938.

    Google Scholar 

  10. 9.

    et al. Antifungal substances from moulds. Part I. Patulin (anhydro-3-hydroxymethylene tetrahydro-1∶4-pyrone-2-carboxylic acid) a metabolic product ofPenicillium patulum Bainier andP. expansum (Link) Thom. Jour. Soc. Chem. Ind. (London)62: 236–238. 1943.

    Google Scholar 

  11. 10.

    Arnstein, H. R. V. andCook, A. H. Production of antibiotics by fungi. Part III. Javanicin. An antibacterial pigment fromFusarium javanicum. Jour. Chem. Soc. 1021–1028. 1947.

  12. 11.

    et al. Production of antibiotics by fungi. II. Production byFusarium javanicum and otherFusaria. Brit. Jour. Exp. Path.27: 349–355. 1946.

    Google Scholar 

  13. 12.

    Atkinson, N. Antibacterial substances produced by moulds. I. Penicidin, a product of the growth of a penicillium. Aust. Jour. Exp. Biol. & Med. Sci.20: 287. 1942.

    Google Scholar 

  14. 13.

    — Antibacterial substances produced by moulds. 2. The antibacterial substances produced by some common Penicillia. Aust. Jour. Exp. Biol. & Med. Sci.21: 15–16. 1943.

    Google Scholar 

  15. 14.

    — Toadstools and mushrooms as a source of antibacterial substances active againstMycobacterium phlei andBact. typhosum. Nature (London)157: 441. 1946.

    Google Scholar 

  16. 15.

    et al. Antibacterial substances produced by moulds. VI. The production of crystalline penicidin. Aust. Jour. Exp. Biol. & Med. Sci.22: 223–226. 1944.

    Google Scholar 

  17. 16.

    Baker, W. andRaistrick, H. Derivatives of 1∶2∶3∶4-tetrahydroxybenzene. Part VII. The synthesis of fumigatin. Jour. Chem. Soc. 670–672. 1941.

  18. 17.

    Barger, G. andDorrer, O. Chemical properties of puberulic acid, C8H6O6, and a yellow acid, C8H4O6. Biochem. Jour.28: 11–15. 1934.

    Google Scholar 

  19. 18.

    Barta, J. andMečiř, R. Antibacterial activity ofPenicillium divergens Bainier. Experientia4: 277–278. 1948.

    Google Scholar 

  20. 19.

    Baxter, R. A. andSpring, F. S. Pyrazine derivatives. Part III. Conversion of diketopiperazines into pyrazine derivatives. Synthesis of 2-hydroxy-3∶6-di-sec.-butyl-pyrazine fromisoleucine. Jour. Chem. Soc. 1179–1183. 1927.

  21. 20.

    Bayliss, M. Effect of the chemical constitution of soaps upon their germicidal properties. Jour. Bact.31: 489–504. 1936.

    Google Scholar 

  22. 21.

    Bendz, G. An antibiotic agent fromMarasmius graminum. Acta Chem. Scand.2: 192. 1948.

    Google Scholar 

  23. 22.

    et al. The antibiotic agent fromMarasmius ramealis. Nature (London)162: 61–62. 1948.

    Google Scholar 

  24. 23.

    Bergel, F. et al. An antibacterial substance fromAspergillus clavatus andPenicillium claviforme and its probable identity with patulin. Nature (London)152: 750. 1943.

    Google Scholar 

  25. 24.

    Bernhauer, K. et al. Ein Beitrag zur Penicillinbildung durchPenicillium-Arten. Zeit. Naturf.5b: 103–111. 1950.

    Google Scholar 

  26. 25.

    Birkinshaw, J. H. et al. Studies in the biochemistry of microorganisms. 78. The molecular constitution of mycophenolic acid, a metabolic product ofPenicillium brevicompactum Dierckx. Part II. Possible structural formulae for mycophenolic acid. Biochem. Jour.43: 216–223. 1948.

    Google Scholar 

  27. 26.

    et al. Studies in the biochemistry of microorganisms. 72. Gentisyl alcohol (2∶5-dihydroxybenzyl alcohol), a metabolic product ofPenicillium patulum Bainier. Biochem. Jour.37: 726–728. 1943.

    Google Scholar 

  28. 27.

    et al. Studies in the biochemistry of microorganisms. 70. Stipitatic acid, C8H6O5 a metabolic product ofPenicillium stipitatum Thom. Biochem. Jour.36: 242. 1942.

    Google Scholar 

  29. 28.

    et al. Studies in the biochemistry of microorganisms. Part VII. Kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone). Philos. Trans.220B: 127–138. 1931.

    Google Scholar 

  30. 29.

    et al. Patulin in the common cold. Collaborative research on a derivative ofPenicillium patulum Bainier. Lancet2: 625–630. 1943.

    Google Scholar 

  31. 30.

    et al. Studies in the biochemistry of microorganisms. XLVIII. Penicillic acid, a metabolic product ofPenicillium puberulum Bainier andP. cyclopium Westling. Biochem. Jour.30: 394–411. 1936.

    Google Scholar 

  32. 31.

    — andRaistrick, H. Studies in the biochemistry of microorganisms. Part XII. On a new methoxy-hydroxy-toluquinone produced from glucose by species ofPenicillium of theP. spinulosum series. Philos. Trans.220B: 245–254. 1931.

    Google Scholar 

  33. 32.

    — and — Studies in the biochemistry of microorganisms. XXIII. Puberulic acid C8H6O6 and an acid C8H4O6, new products of the metabolism of glucose byPenicillium puberulum Bainier andPenicillium aurantio-virens Biourge. With an appendix on certain dihydroxybenzenedicarboxylic acids Biochem. Jour.26: 441–453. 1932.

    Google Scholar 

  34. 33.

    et al. Studies in the biochemistry of microorganisms. Fumaryl-dl-alanine (Fumaromono-dl-alanide), a metabolic product ofPenicillium resticulosum sp. nov. Biochem. Jour.36: 829–835. 1942.

    Google Scholar 

  35. 34.

    Bisby, G. R. Trichoderma viride Pers. ex Fries, and notes onHypocrea. Trans. Brit. Mycol. Soc.23: 149–168. 1939.

    Google Scholar 

  36. 35.

    Björkman, E. Soil antibiotics acting against the root-rot fungus (Polyporus annosus Fr.). Physiol. Plant.2: 1–10. 1949.

    Google Scholar 

  37. 36.

    Borodin, N. et al. An antibiotic fromPenicillium tardum. Brit. Jour. Exp. Path.28: 31–34. 1947.

    Google Scholar 

  38. 37.

    Borzini, G. Sull'attività antibiotica delFomes officinalis (Will.) Fr. Atti V3: 277–278. 1949.

    Google Scholar 

  39. 38.

    et al., Ricerche sull'attività antibiotica di alcuni Basidiomyceti. Atti V3: 279–281. 1949.

    Google Scholar 

  40. 39.

    Bose, S. R. Antibacterial action of ‘polyporin’ against typhoid, cholera, dysentery andB. coli. Nature (London)156: 171. 1945.

    Google Scholar 

  41. 40.

    —. Antibiotics in a polyporus (Polystictus sanguineus) Nature (London)158: 292–296. 1946.

    Google Scholar 

  42. 41.

    Bracken, A. andRaistrick, H. Studies in the biochemistry of microorganisms. 75. Dehydrocarolic acid, a metabolic product ofPenicillium cinerascens Biourge. Biochem. Jour.41: 569–574. 1947.

    Google Scholar 

  43. 42.

    Brian, P. W. Production of gliotoxin byTrichoderma viride. Nature (London)154: 667. 1944

    Google Scholar 

  44. 43.

    — Production of gliotoxin byPenicillium terlikowski Zal. Trans. Brit. Mycol. Soc.29: 211–218. 1946.

    Google Scholar 

  45. 44.

    — Studies on the biological activity of griseofulvin. Ann. Bot. (London)13: 59–77. 1949.

    Google Scholar 

  46. 45.

    Brian, P. W. The production of antibiotics by microorganisms in relation to biological equilibria in soil. Symp. Soc. Exp. Biol. III. (Antibiotics) 357–372. 1949.

    Google Scholar 

  47. 46.

    Brian, P. W. (Unpublished). 1950.

  48. 47.

    et al. Gladiolic acid: an antifungal and antibacterial metabolic product ofPenicillium gladioli McCull. & Thom. Nature (London)157: 697. 1946.

    Google Scholar 

  49. 48.

    et al. A substance causing abnormal development of fungal hyphae produced byPenicillium janczewskii Zal. I. Biological assay, production and isolation of ‘curling factor’. Trans. Brit. Mycol. Soc.29: 173–187. 1946.

    Google Scholar 

  50. 49.

    et al. Glutinosin: a fungistatic metabolic product of the mouldMetarrhizium glutinosum S. Pope. Proc. Royal Soc.135B: 106–132. 1947.

    Google Scholar 

  51. 50.

    et al. Gladiolic acid, an antibiotic substance produced byPenicillium gladioli McCull. & Thom. Jour. Gen. Microbiol.2: 341–355. 1948.

    Google Scholar 

  52. 51.

    Brian, P. W. et al. A substance causing abnormal development of fungal hyphae produced byPenicillium janczewskii Zal. III. Identity of ‘curling factor’ with griseofulvin. Trans. Brit. Mycol. Soc.32: 1949.

  53. 52.

    et al. The production of viridin by pigment-forming strains ofTrichoderma viride. Ann. Appl. Biol.33: 190–200. 1946.

    Google Scholar 

  54. 53.

    et al. Alternaric acid, a biologically active metabolic product of the fungusAlternaria solani. Nature (London)165: 534. 1949.

    Google Scholar 

  55. 54.

    Brian, P. W. et al. Three new antibiotics from a species ofGliocladium. Experientia 1951. [In press]

  56. 55.

    — andHemming, H. G. Gliotoxin, a fungistatic metabolic product ofTrichoderma viride. Ann. Appl. Biol.32: 214–220. 1945.

    Google Scholar 

  57. 56.

    — and — Production of antifungal and antibacterial substances by fungi: preliminary examination of 166 strains of Fungi Imperfecti. Jour. Gen. Microbiol.1: 158–167. 1947.

    Google Scholar 

  58. 57.

    et al. Production of antibiotics by species ofMyrothecium. Mycologia40: 363–368. 1948.

    Google Scholar 

  59. 58.

    Brian, P. W. et al. (Unpublished results). 1950.

  60. 59.

    et al. Origin of a toxicity to mycorrhiza in Wareham Heath soil. Nature (London)155: 637. 1945.

    Google Scholar 

  61. 60.

    — andMcGowan, J. C. Viridin: a highly fungistatic substance produced byTrichoderma viride. Nature (London)156: 144. 1945.

    Google Scholar 

  62. 61.

    — and —. Biologically active metabolic products of the mouldMetarrhizium glutinosum S. Pope. Nature (London)157: 334. 1946.

    Google Scholar 

  63. 62.

    Brotzu, G. Researches on a new antibiotic. Lav. Ist. Igiene Univ. Cagliari 1940–1946. 1949. Abs. in Bull. Hyg. (London)24: 804. 1949.

    Google Scholar 

  64. 63.

    Burton, H. S. Antibiotics from Penicillia. Brit. Jour. Exp. Path.30: 151–158.

  65. 64.

    — Antibiotics fromAspergillus melleus. Nature (London).165: 274–275. 1950.

    Google Scholar 

  66. 65.

    Bush, M. T. andGoth, A. An antibacterial substance produced byAspergillus flavus. Fed. Proc.2: 75. 1943.

    Google Scholar 

  67. 66.

    — and —. Flavicin: an antibacterial substance produced by anAspergillus flavus. Jour. Pharmacol.78: 164–169. 1943.

    Google Scholar 

  68. 67.

    Calam, C. T. et al.. Studies in the biochemistry of microorganisms. 74. The molecular constitution of geodin and erdin, two chlorine-containing metabolic products ofA. terreus Thom. Part 3. Possible structural formulae for geodin and erdin. Biochem. Jour.41: 458–462. 1947.

    Google Scholar 

  69. 68.

    Campbell, A. H. et al. Nitrogenous substances synthesised by moulds. Nature (London)155: 141. 1945.

    Google Scholar 

  70. 69.

    Cartwright, N. J. et al. A synthesis of citrinin. Nature (London).163: 94. 1949.

    Google Scholar 

  71. 70.

    Cercos, A. P. Accion antibiotica deSeptoria nodorum. Rev. Inv. Agr.3: 27–30. 1949.

    Google Scholar 

  72. 71.

    Chain, E. et al. An antibacterial substance produced byPenicillium claviforme. Brit. Jour. Exp. Path.23: 202–205. 1942.

    Google Scholar 

  73. 72.

    Chain, E. et al. Identity of patulin and claviformin. Lancet 112–114. 1944.

  74. 73.

    et al., Helvolic acid, an antibiotic produced byAspergillus fumigatus mut.helvola Yull. Brit. Jour. Exp. Path.24: 108–119. 1943.

    Google Scholar 

  75. 74.

    Chastukhin, V. Ya. andNikolaevskaya, M. A. Ecological study of fungi which form antibiotics. Mikrobiologiya17: 3–9. 1948. Abs. in Chem. Abs.42: 8883. 1949.

    Google Scholar 

  76. 75.

    Chaze, J. Sur les propriétés abiotiquesin vitro du mycélium végétatif deTuber melanosporum. Comp. Rend. Acad. Sci. (Paris)224: 491–493. 1947.

    Google Scholar 

  77. 76.

    Clutterbuck, P. W. et al. Studies in the biochemistry of microorganisms. 55. The molecular constitution of geodin and erdin, two chlorine-containing metabolic products ofAspergillus terreus Thom. Biochem. Jour.31: 1089–1092. 1937.

    Google Scholar 

  78. 77.

    et al. Studies in the biochemistry of microorganisms. 24. The metabolic products of thePenicillium brevicompactum series Biochem. Jour.26: 1441–1458. 1932.

    Google Scholar 

  79. 78.

    — andRaistrick, H. Studies in the biochemistry of microorganisms. 31. The molecular constitution of the metabolic products ofPenicillium brevicompactum Dierckx and related species. II. Mycophenolic acid. Biochem. Jour.27: 654–667. 1933.

    Google Scholar 

  80. 79.

    Cook, A. H. et al. Antibiotics produced by fungi, and a new phenomenon in optical resolution. Nature (London)162: 61. 1948.

    Google Scholar 

  81. 80.

    et al. Production of antibiotics byFusaria. Nature (London)160: 31–32. 1947.

    Google Scholar 

  82. 81.

    — andLacey, M. S. An antibiotic fromAspergillus parasiticus. Nature (London)153: 460. 1944.

    Google Scholar 

  83. 82.

    — and — Production of antibiotics by fungi Brit. Jour. Exp. Path.26: 404–409. 1945.

    Google Scholar 

  84. 83.

    Corbett, R. E. et al. Puberulic, puberulonic and stipitatic acids. Chem. Ind. 626. 1949.

  85. 84.

    Coulthard, C. E. et al. Notatin: an antibacterial glucose-aerodehydrogenase fromPenicillium notatum Westling andPenicillium resticulosum sp. nov. Biochem. Jour.39: 24–36. 1945.

    CAS  Google Scholar 

  86. 85.

    et al. Notatin: an antibacterial glucose aerodehydrogenase fromPenicillium notatum Westling. Nature (London)150: 634–635. 1942.

    CAS  Google Scholar 

  87. 86.

    Coyne, F. P. et al. Studies in the biochemistry of microorganisms. XV. The molecular structure of citrinin. Philos. Trans.220B: 297–301. 1931.

    Google Scholar 

  88. 87.

    Cross, L. C. et al. Constituents, of the higher fungi. Part I. the triterpene acids ofPolyporus betulinus Fr. Jour. Chem. Soc. 632–636. 1940.

  89. 88.

    Curtin, T. et al. Production of phoenicine on synthetic media. 1.Penicillium phoeniceum van Beyma. 2.Penicillium rubrum Grasberger-Stoll. Biochem. Jour.34: 1605–1610. 1940.

    CAS  Google Scholar 

  90. 89.

    Curtis, P. J. (Unpublished results). 1950.

  91. 90.

    — and — A fungistatic and bacteriostatic red pigment produced by a strain of thePenicillium nigricans-janczewskii series. Nature (London)160: 574. 1947.

    CAS  Google Scholar 

  92. 91.

    Curtis, P. J. et al. (Unpublished results). 1950.

  93. 91

    a.—et al. Frequentin: an antibiotic produced by some strains ofPenicillium frequentans Westling. Nature (London)167: 557. 1951.

    CAS  Google Scholar 

  94. 92.

    Davoli, R. An antibiotic fromAspergillus ustus Sperimentale99: 197–208. 1948. Abs. in Chem. Abs.43: 3489. 1949.

    PubMed  CAS  Google Scholar 

  95. 93.

    Doering, W. E. et al. Metabolic products ofAspergillus ustus Jour. Am. Chem. Soc.68: 725–726. 1946.

    CAS  Google Scholar 

  96. 94.

    Dunn, G. et al. Structure of the antibacterial compound, aspergillic acid. Nature (London)162: 779. 1948.

    CAS  Google Scholar 

  97. 95.

    Dutcher, J D. Aspergillic acid: an antibiotic substance produced byAspergillus flavus., I. General properties; formation of desoxyaspergillic acid; structural conclusions. Jour. Biol. Chem.171: 321–339. 1947.

    CAS  Google Scholar 

  98. 96.

    — Aspergillic acid: an antibiotic substance produced byAspergillus flavus. II. Bromination reations and reduction with sodium and alcohol. Jour. Biol. Chem.171: 341–353. 1947.

    CAS  Google Scholar 

  99. 97.

    — andWintersteiner, O. Structure of aspergillic acid. Jour. Biol. Chem.155: 359. 1944.

    CAS  Google Scholar 

  100. 98.

    et al. Structural, inverstigation of hydroxyaspergillic acid, an antibiotic, substance produced byAspergillus flavus. Fed. Proc.7: 152–153. 1948.

    Google Scholar 

  101. 99.

    Duyvene De Wit, J. J. et al. De Isoleering van een bactericide en fungicide stof mit een penseelschimmel. Ned. Tijdschr. Geneesk.88: 718–719. 1944.

    Google Scholar 

  102. 100.

    Engel, B. G. andBrzeski, W. Über die, Isolierung eines Chinhydrons von Gentisinalkohol und Oxymethyl-p-benzochinon (Gentisinchinon) aus dem Kulturfeltrat vonPenicillium urticae Bainier Helv. Chim. Acta.30: 1472–1478. 1947.

    CAS  Google Scholar 

  103. 101.

    Falck, R. Über ein krystallisiertes Stoffwechselprodukt vonSparassis ramosa Schäff. Ber. Deut. Chem. Ges.56B: 2555–2556. 1923.

    CAS  Google Scholar 

  104. 102.

    Florey, H. W. et al. Antibiotics. 2 vols. 1949.

  105. 103.

    et al. Penicillin-like antibiotics from various species of moulds. Nature (London)159 268. 1944.

    Google Scholar 

  106. 104.

    et al. Mycophenolic acid: an antibiotic fromPenicillium brevicompactum Dierckx. Lancet1: 46–49. 1946.

    Google Scholar 

  107. 105.

    et al. Claviformin fromAspergillus giganteus Wehm. Nature (London)153: 139. 1944.

    Google Scholar 

  108. 106.

    Foster, J. W. andKarow, E. O. Microbiological aspects of penicillin. VIII. Penicillin from different fungi. Jour. Bact.49: 19–29. 1945.

    CAS  Google Scholar 

  109. 107.

    Fragner, P. A new antibacterial substance fromInoloma traganum (Inolomin). Experientia5: 167. 1949.

    PubMed  CAS  Google Scholar 

  110. 108.

    Freeman, G. G. andMorrison, R. I. Trichothecin: an antifungal metabolic product ofTrichothecium roseum Link. Nature (London)162: 30. 1948.

    CAS  Google Scholar 

  111. 109.

    — and — Some biological properties of trichothecin, an antifungal substance fromTrichothecium roseum Link. Jour. Gen. Microbiol.3: 60–68. 1949.

    CAS  Google Scholar 

  112. 110.

    — and — The isolation and chemical properties of trichothecin, an antifungal substance fromTrichothecium roseum Link. Biochem. Jour.44: 1–5. 1949.

    CAS  Google Scholar 

  113. 110

    Freeman, G. G. andGill, J. E. Private communication to author. 1950.

  114. 111.

    et al. Metabolic products ofTrichothecium roseum Link. Biochem. Jour.45: 191–199. 1949.

    CAS  Google Scholar 

  115. 112.

    Friedheim, E. A. H. Recherches sur la biochimie des champignons inférieurs. I. Isolement du pigment rouge dePenicillium phoeniceum (Phoenicine). Helv. Chim. Acta21: 1464–1465. 1938.

    CAS  Google Scholar 

  116. 113.

    Furtado, A. R. Pesquisa da atividade antibacteriana com 180 amostras deAspergillus Micheli,1729 Mem. Inst. Osw. Cruz41: 205–222. 1944.

    Google Scholar 

  117. 113

    Galloway, L. D. A puzzle for mycologists. Food Manuf. 506. December, 1950.

  118. 114.

    Gäumann, E. andJaag, O. Die physiologischen Grundlagen des parasitogenen Welkens. I. Ber. Schweiz. Bot. Ges.57: 3–34. 1947.

    Google Scholar 

  119. 115.

    — and — Die physiologischen Grundlagen des parasitogenen Welkens. II. Ber. Schweiz. Bot. Ges.57: 132–148. 1947.

    Google Scholar 

  120. 116.

    et al. Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum. Experientia3: 202–203. 1947.

    Google Scholar 

  121. 117.

    Geiger, W. B. Chetomin, an antibiotic substance fromChaetomium cochliodes. III. Composition and functional groups. Arch. Biochem.21: 125. 1949.

    PubMed  CAS  Google Scholar 

  122. 118.

    et al. Chaetomin. II. Isolation and concentration. Jour. Bact.48: 531–536. 1944.

    CAS  Google Scholar 

  123. 119.

    Gill-Carey, D. Antibiotics from Aspergilli. Brit. Jour. Exp. Path.30: 114–118. 1949.

    CAS  Google Scholar 

  124. 120.

    — The nature of some antibiotics from Aspergilli. Brit. Jour. Exp. Path.30: 119–123. 1949.

    CAS  Google Scholar 

  125. 121.

    Gilliver, K. The inhibitory action of antibiotics on plant pathogenic bacteria and fungi. Ann. Bot. (London)10: 271–282. 1946.

    CAS  Google Scholar 

  126. 122.

    Gilman, J. C. andAbbott, E. V. A summary of the soil fungi. Iowa State Coll. Jour. Sci.1: 225–345. 1927.

    Google Scholar 

  127. 123.

    Gould, B. S. CVII. The metabolism ofAspergillus tamarii Kita. Kojic acid production. Biochem. Jour.32: 797–802. 1938.

    CAS  Google Scholar 

  128. 124.

    Grosser, A. andFriedrich, W. Über die Bildung von 6-Methylsalicylsäure durchPenicillium claviforme Bain. Zeits. Naturf.3b: 380–381. 1948.

    CAS  Google Scholar 

  129. 125.

    Grove, J. F. (Unpublished result). 1950.

  130. 125

    Grove, J. F. andBrian, P. W. The identity of frequentic acid and citromycetin. Nature (London) 1951. [In press]

  131. 126.

    — andMcGowan, J. C. Identity of griseofulvin and «curling factor». Nature (London)160: 574. 1947.

    CAS  Google Scholar 

  132. 127.

    Grove, J. F. andMcGowan, J. C. Some applications of physical chemistry to the study of cetrain biologically active compounds. Chem. Ind. 647–652. 1949.

  133. 128.

    Grove, W. B. British stem and leaf fungi. 2 vols. 1935–37.

  134. 129.

    Harris, H. A. Heterothallic antibiosis inMucor racemosus. Mycologia40: 347–351. 1948.

    Google Scholar 

  135. 130.

    Haskins, R. H. Biochemistry of the Ustilaginales. I. Preliminary cultural studies ofUstilago zeae. Canad. Jour. Res. C28: 213–223. 1950.

    Google Scholar 

  136. 131.

    Heatley, N. G. et al. Antibiotics fromStereum hirsutum. Brit. Jour. Exp. Path.28: 35–46. 1947.

    CAS  Google Scholar 

  137. 132.

    Hemming, H. G. et al. (Unpublished results). 1950.

  138. 133.

    Hervey, A. H. A survey of 500 basidiomycetes for antibacterial activity. Bull. Torrey Bot. Club74: 476–503. 1947.

    CAS  Google Scholar 

  139. 134.

    Hetherington, A. C. andRaistrick, H. Studies in the biochemistry of microorganisms. Part XI. On citromycetin, a new yellow colouring matter produced from glucose by species ofCitromyces. Philos. Trans.220B: 209–244. 1931.

    Google Scholar 

  140. 134a.

    — and — Studies in the biochemistry of microorganisms. Part XIV. On the production and chemcial constitution of a new yellow colouring matter, citrinin, produced from glucose byPenicillium citrinum Thom. Philos. Trans.220B: 269–294. 1931.

    Google Scholar 

  141. 135.

    Hogeboom, G. H. andCraig, L. C. Identification by distribution studies. I. Isolation of antibiotic principles fromAspergillus ustus. Jour. Biol. Chem.162: 363–368. 1946.

    CAS  Google Scholar 

  142. 136.

    Hollande, A. C. Lyse massive des bacilles de Koch chez le cobaye après traitement de la clitocybine. Pouvoir inhibiteur de ce produit vis-à-vis du bacille typhique, des colibacilles, deBrucella abortus etc. Comp. Rend. Acad. Sci. (Paris),221: 361–363. 1946.

    Google Scholar 

  143. 137.

    — L'action de la clitocybine sur le bacille tuberculeux et autres microbes. Atomes3: 1–5. 1946.

    Google Scholar 

  144. 138.

    — La bacteriostase et al bacteriolyse du bacille tuberculeux par la clitocybine. Comp. Rend. Acad. Sci. (Paris)224: 1534–1536. 1947.

    Google Scholar 

  145. 139.

    — A propos de la clitocybine cristallisée. Comp. Rend. Acad. Sci. (Paris)228: 1758. 1949.

    CAS  Google Scholar 

  146. 140.

    Hooper, I. R. et al. The identity of clavacin with patulin. Science99: 16. 1944.

    PubMed  CAS  Google Scholar 

  147. 141.

    Jennings, M. A. andWilliams, T. I. Production of kojic acid byAspergillus effusus Tir. Nature (London)155: 302. 1945.

    CAS  Google Scholar 

  148. 142.

    Johns, M. E. et al. Moulds producing penicillin-like antibiotics. Nature (London)158: 446. 1946.

    Google Scholar 

  149. 143.

    Johnson, J. R. et al. Gliotoxin, the antibiotic principle ofGliocladium fimbriatum. I. Production, physical, and biological properties. Jour. Am. Chem. Soc.65: 2005–2009. 1943.

    CAS  Google Scholar 

  150. 144.

    Jones, H. et al. Studies onAspergillus flavus. I. Biological properties of crude and purified aspergillic acid. Jour. Bact.45: 461–469. 1943.

    CAS  Google Scholar 

  151. 145.

    Karow, E. O. andFoster, J. W. An antibiotic substance from species ofGymnoascus andPenicillium. Science99: 265–266. 1944.

    PubMed  CAS  Google Scholar 

  152. 146.

    et al. Penicillic acid fromAspergillus ochraceus, Penicillium thomii andPenicillium suavolens. Arch. Biochem.5: 279–282. 1944.

    CAS  Google Scholar 

  153. 147.

    Karrer, P. et al. Über Lactaroviolin, einen Farbstoff ausLactarius deliciosus. Helv. Chim. Acta28: 1176–1180. 1945.

    CAS  Google Scholar 

  154. 148.

    Katzman, P. A. et al. Clavacin, an antibiotic substance fromAspergillus clavatus. Jour. Biol. Chem.154: 475. 1944.

    CAS  Google Scholar 

  155. 149.

    Kavanagh, F. et al. Antibiotic substances from Basidiomycetes. IV.Marasmius conigenus. Proc. Nat. Acad. Sci. (Wash.)35: 343–349. 1949.

    CAS  Google Scholar 

  156. 150.

    et al. Antibiotic substances from Basidiomycetes. V.Poria corticola, Poria tenuis and an unidentified Basidiomycete. Proc. Nat. Acad. Sci. (Wash.)36: 1–7. 1950.

    CAS  Google Scholar 

  157. 151.

    et al. Antibiotic substances from Basidiomycetes. VI.Agrocybe dura. Proc. Nat. Acad. Sci. (Wash.)36: 102–106. 1950.

    CAS  Google Scholar 

  158. 152.

    Kent, G. C. The inhibiting substance formed byDiplodia zeae. Phytopathology28: 12. 1938.

    Google Scholar 

  159. 153.

    Kent, J. andHeatley, N. G. Antibiotics from moulds. Nature (London)156: 295–296. 1945.

    CAS  Google Scholar 

  160. 154.

    Kodicek, E. The effect of unsaturated fatty acids on Gram-positive bacteria. Symp. Soc. Exp. Biol.3: 217–232. 1949.

    Google Scholar 

  161. 155.

    Kondo, S. andTakahashi, B. Antibiotic substance obtained in crystalline form fromPenicillium. Jour. Penicillin (Japan)1: 147–150. 1947.

    CAS  Google Scholar 

  162. 156.

    Krassilinikov, N. A. andKoreniako, A. I. Antibacterial peculiarities ofAspergillus niger. Microbiologiya14: 347–352. 1945.

    Google Scholar 

  163. 157.

    Kurung, J. M. Aspergillus ustus. Science102: 11. 1945.

    PubMed  Google Scholar 

  164. 158.

    Locquin, M. et al. Recherches sur l'acide ungulinique (=acide polyporenique A), antibiotique produit parUngulina betulina. Rev. Mycol.13: 3–9. 1948.

    Google Scholar 

  165. 159.

    Löfgren, N. et al. An antibiotic fromAgaricus (Clitocybe) nebularis Batsch active against mycobacteria. Svensk Farm. Tidskr.53: 321–323. 1949.

    Google Scholar 

  166. 160.

    Luijk, A. Van. Antagonism between various microorganisms and different species of the genusPythium, parasitising upon grasses and lucerne. Med. Phytopath. Lab. Scholten.14: 43–82. 1938.

    Google Scholar 

  167. 161.

    Lyanda-Geller, B. A. andMarkovich, A. V. Influence of nitrogen and carbohydrate nutrients on penicillin production byPenicillium crustosum. Mikrobiologiya16: 105–111. 1947.

    CAS  Google Scholar 

  168. 162.

    McGowan, J. C. A study of the effects of certain classes of chemical substances upon microorganisms. London Univ., Ph.D. Thesis. 1949.

  169. 163.

    et al. The fungistatic activity of ethylenic and acetylenic compounds. I. The effect of the affinity of the substituents for electrons upon the biological activity of ethylenic compounds. Ann. Appl. Biol.35: 25–36. 1948.

    CAS  Google Scholar 

  170. 164.

    McKee, C. M. andMacphillamy, H. B. An antibiotic substance produced by submerged cultivation ofAspergillus flavus. Proc. Soc. Exp. Biol., N. Y.53: 247–248. 1943.

    CAS  Google Scholar 

  171. 165.

    et al. Aspergillus flavus. II. The production and properties of a penicillin-like substance, flavacidin. Jour. Bact.47: 187–197. 1944.

    CAS  Google Scholar 

  172. 166.

    Marcus, S. Antibacterial activities of geodin and erdin. Biochem. Jour.41: 462–463. 1947.

    CAS  Google Scholar 

  173. 167.

    Martin, G. W. Outline of the fungi. Univ. Ia. Stud. Nat. Hist.18: 1–40. 1941.

    Google Scholar 

  174. 168.

    Mathieson, J. Antibiotics from Victorian Basidiomycetes. Aust. Jour. Exp. Biol. Med. Sci.24: 57–59. 1946.

    Google Scholar 

  175. 169.

    May, O. E. et al. The production of kojic acid byAspergillus flavus. Jour. Am. Chem. Soc.53: 774–782. 1931.

    CAS  Google Scholar 

  176. 170.

    Melin, E. et al. Antibiotics agents in the substrates from cultures of the genusMarasmius. Nature (London)159: 840. 1947.

    Google Scholar 

  177. 171.

    Menzel, A. E. O. et al. The isolation of gliotoxin and fumigacin from culture filtrates ofAspergillus fumigatus. Jour. Biol. Chem.152: 419–429. 1944.

    CAS  Google Scholar 

  178. 172.

    et al. Note on antibiotic substances elaborated by anAspergillus flavus strain and by an unclassified mould. Jour. Bact.46: 109. 1943.

    CAS  Google Scholar 

  179. 173.

    Meyer, J. R. Bacteriostatic action of red ‘ear of corn’ (Polyporus cinnabarinus). Biologico10: 165–168. 1944. Abs. in Rev. Appl. Mycol.23: 493. 1944.

    Google Scholar 

  180. 174.

    — Açào bacteriostática de um cogumelo macroscópico pertencente à familia das Poriporaceas ‘Polyporus cinnabarinus (Jacq.) Fries’. Arq. Inst. Biol. S. Paulo15: 27–36. 1944.

    Google Scholar 

  181. 175.

    Michael, S. E. Studies in the biochemistry of microorganisms. 79. Fuscin, a metabolic product ofOidiodendron fuscum Robak. Part I. Preparation, properties and antibacterial activity. Biochem. Jour.43: 528–531. 1948.

    CAS  Google Scholar 

  182. 176.

    Miller, D. K. andRekate, A. C. Inhibition of growth ofMycobacterium tuberculosis by a mould. Science100: 172–173. 1944.

    PubMed  Google Scholar 

  183. 177.

    Morton, H. E. et al. Toxicity and antibiotic activity of kojic acid produced byAspergillus luteo-virescens. Jour. Bact.50: 579–584. 1945.

    CAS  Google Scholar 

  184. 178.

    Mull, R. P. et al. The production of gliotoxin and a second active isolate byPenicillium obscurum Biourge. Jour. Am. Chem. Soc.67: 1626–1627. 1945.

    CAS  Google Scholar 

  185. 179.

    Nauta, W. T. et al. The structure of expansin, a metabolic product ofPenicillium expansum with antibiotic properties. Rec. Trav. Chim. Pays-Bas64: 254–255. 1945.

    CAS  Google Scholar 

  186. 180.

    et al. On the structure of expansine, a bactericidal and fungicidal substance inPenicillium expansum Westl. Rec. Trav. Chim. Pays-Bas65: 865–876. 1946.

    CAS  Google Scholar 

  187. 181.

    Nishikawa, H. Biochemistry of molds. II. A metabolic product ofAspergillus melleus Yukawa. Jour. Agr. Chem. Soc. (Japan)9: 772–774. 1933.

    CAS  Google Scholar 

  188. 182.

    — Biochemistry of molds. III. A metabolic product ofAspergillus melleus Yukawa. Jour. Agr. Chem. Soc. (Japan)9: 1059–1063. 1933.

    CAS  Google Scholar 

  189. 183.

    Oxford, A. E. Antibacterial substances from moulds. Part 3. Some observations on the bacteriostatic powers of the mould products citrinin and penicillic acid. Chem. Ind.61: 48–51. 1942.

    Google Scholar 

  190. 184.

    — andRaistrick, H. Antibacterial substances from moulds. Part 4. Spinulosin and fumigatin, metabolic products ofPenicillium spinulosum Thom andAspergillus fumigatus Fresenius. Chem. Ind.61: 128–129. 1942.

    Google Scholar 

  191. 185.

    — and — Studies in the biochemistry of Microorganisms. 76. Mycelianamide C22H28O5N2. A metabolic product ofPenicillium griseofulvum Dierckx. Part I. Preparation, properties, and breakdown products. Biochem. Jour.42: 323–329. 1948.

    CAS  Google Scholar 

  192. 186.

    et al. Studies in the biochemistry of microorganisms. 44. Fulvic acid, a new crystalline yellow pigment, a metabolic product ofP. griseofulvum Dierckx,P. flexuosum Dale andP. brefeldianum Dodge. Biochem. Jour.29: 1102–1115. 1935.

    CAS  Google Scholar 

  193. 187.

    et al. Studies in the biochemistry of microorganisms. 60. Griseofulvin, a metabolic product ofPenicillium griseofulvum Dierckx. Biochem. Jour.33: 240–248. 1939.

    CAS  Google Scholar 

  194. 188.

    et al. Antibacterial substances from moulds. Part 2. Penicillic acid, a metabolic product ofPenicillium puberulum Bainier, andPenicillium cyclopium Westling. Chem. Ind.61: 22–24. 1942.

    Google Scholar 

  195. 189.

    et al. Antibacterial substances from moulds. Part 6. Puberulic acid, C8H6O6 and puberulonic acid, C8H4O6, metabolic products of a number of species ofPenicillium. Chem. Ind.61: 485–487. 1942.

    Google Scholar 

  196. 190.

    Page, J. E. andRobinson, F. A. Polarographic studies. Part II. Mould metabolites and related quinones. Jour. Chem. Soc. 133–135. 1943.

  197. 191.

    Peck, S. M. andHewitt, W. L. The production of an antibiotic substance similar to penicillin by pathogenic fungi (dermatophytes). Pub. Health Rep. (U.S.A.)60: 148–153. 1945.

    Google Scholar 

  198. 192.

    Penau, H. andHagenmann, G. Essais d'extraction d'une substance bactericide d'origine fongique. Comp. Rend. Soc. Biol. (Paris)137: 724–725. 1943.

    CAS  Google Scholar 

  199. 193.

    et al. Attempts to extract a bactericidal substance of fungal origin. Bull. Soc. Chim. Biol. (Paris)25: 406–410. 1943.

    CAS  Google Scholar 

  200. 194.

    et al. Properties of a staphylolytic principle elaborated by a mold resemblingPenicillium notatum. Comp. Rend. Soc. Biol. (Paris)137: 592–594. 1943.

    CAS  Google Scholar 

  201. 195.

    Perault, R. andGreib, E. Mode of action of corylophillin. Comp. Rend. Soc. Biol. (Paris)138: 797–798. 1944.

    CAS  Google Scholar 

  202. 196.

    Philpot, F. J. A penicillin like substance fromAspergillus giganteus Wehm. Nature (London)152: 725. 1943.

    CAS  Google Scholar 

  203. 197.

    Plattner, P. A. andClauson-Kaas, N. Über in Welke erzeugendes Stoffwechselprodukt vonFusarium lycopersici Sacc. Helv. Chim. Acta28: 188–195. 1944.

    Google Scholar 

  204. 198.

    — and — Über Lycomarasmin, den Welkstoff aus Fusarium lycopersici Sacc. Experientia1: 195–196. 1945.

    CAS  Google Scholar 

  205. 199.

    — andNager, U. Über die Chemie des Enniatins. Experientia3: 325–326. 1947.

    CAS  Google Scholar 

  206. 200.

    — and — Welkstoffe und Antibiotika. Über die Konstitution von Enniatin B. Helv. Chim. Acta31: 665–671. 1948.

    CAS  Google Scholar 

  207. 201.

    — and — Welkstoffe und Antibiotika. Über die Konstitution von Enniatin A. Helv. Chim. Acta.31: 2192–2203. 1948.

    PubMed  CAS  Google Scholar 

  208. 202.

    — and — Welkstoffe und Antibiotika. Analyse und Charakterisierung der Enniatine. Über das Verhalten von N-Methyl-aminosäuren im Papierchromatogram. Helv. Chim. Acta31: 2203–2209. 1948.

    PubMed  CAS  Google Scholar 

  209. 203.

    et al. Über die Isolierung neuartiger Antibiotika aus Fusarien. Helv. Chim. Acta31: 594–602. 1948.

    CAS  Google Scholar 

  210. 204.

    Pollock, A. V. Production of citrinin by five species ofPenicillium. Nature (London)160: 331–332. 1947.

    CAS  Google Scholar 

  211. 205.

    Posternak, T. Recherches sur la biochimie des champignons inférieurs. II. Sur la constitution et la synthèse de la phoenicine et sur quelques nouveaux dérivés de la 4,4′-ditoluquinone. Helv. Chim. Acta.21: 1326–1337. 1938.

    CAS  Google Scholar 

  212. 206.

    Raistrick, H. andSimonart, P. Studies in the biochemistry of microorganisms. 29. 2:5-Dihydroxybenzoic acid (Gentisic acid) a new product of the metabolism of glucose byPenicillium griseofulvum Dierckx. Biochem. Jour.27: 628–633. 1933.

    CAS  Google Scholar 

  213. 207.

    — andSmith, G. Studies in the biochemistry of microorganisms. 42. The metabolic products ofAspergillus terreus Thom; a new mould metabolic product—terrein. Biochem. Jour.29: 606–611. 1935.

    CAS  Google Scholar 

  214. 208.

    — and — Studies in the biochemistry of microorganisms. 51. The metabolic products ofAspergillus terreus Thom. Biochem. Jour.30: 1315–1322. 1936.

    CAS  Google Scholar 

  215. 209.

    — and — Antibacterial substances from moulds. I. Citrinin, a metabolic product fromPenicillium citrinum Thom. Chem. Ind.60: 828–830. 1941.

    Google Scholar 

  216. 210.

    Paper, K. B. andThom, C. Manual of the Penicillia. 1949.

  217. 211.

    Raphael, R. A. Synthesis of the antibiotic, penicillic acid. Nature (London)160: 261. 1947.

    CAS  Google Scholar 

  218. 212.

    Raphael, R.A. Compounds related to penicillic acid. Part II. Synthesis of dihydropenicillic acid. Jour. Chem. Soc. 805–808. 1947.

  219. 213.

    Rennerfelt, E. The effect of some antibiotic substances on the germination of the conidia ofPolyporus annosus Fr. Acta Chem. Scand.3: 1343–1349. 1949.

    CAS  Google Scholar 

  220. 214.

    Riley, R. F. andMiller, D. K. The isolation and identification of an antibiotic substance present in the mycelium ofPenicillium crustosum (Thom). Arch. Biochem.18: 13–26. 1948.

    CAS  Google Scholar 

  221. 215.

    Rivière, C. et al. Etude de la clitocybine, principe antibiotique extrait duClitocybe candida. Comp. Rend. Acad. Sci. (Paris)225: 1386–1388. 1947.

    Google Scholar 

  222. 216.

    Robbins, W.J. et al. A survey of some wood destroying and other fungi for antibacterial activity. Bull. Torrey Bot. Club72: 165–190. 1945.

    Google Scholar 

  223. 217.

    et al. Production of antibiotic substances by Basidiomycetes. Ann. N. Y. Acad. Sci.48: 67–72. 1946.

    Google Scholar 

  224. 218.

    et al. Antibiotic substances from Basidiomycetes. I.Pleurotus griseus. Proc. Nat. Acad. Sci. (Wash.)33: 171–176. 1947.

    CAS  Google Scholar 

  225. 219.

    et al. Antibiotics from Basidiomycetes. II.Polyporus biformis. Proc. Nat. Acad. Sci. (Wash.)33: 176–182. 1947.

    CAS  Google Scholar 

  226. 220.

    Robertson, A. et al. The chemistry of fungi. Part VI. Rosenonolactone fromTrichothecium roseum Link. Jour. Chem. Soc. 879–884. 1949.

  227. 221.

    Seigneurin, R. andRoux, A. Substances antibiotiques élaborés par certains champignons supérieurs. Ann. Inst. Pasteur73: 595–598. 1947.

    Google Scholar 

  228. 222.

    Shope, R. E., The therapeutic activity of a substance fromPenicillium funiculosum Thom against swine influenza virus infection of mice. Am. Jour. Bot.35: 803. 1948.

    Google Scholar 

  229. 223.

    Smith, G. The effect of adding trace elements to Czapek-Dox medium. Trans. Brit. Mycol. Soc.32: 280–283. 1950.

    Google Scholar 

  230. 224.

    Stansly, P. G. andAnanenko, N. H. Candidulin: an antibiotic fromAspergillus candidus. Arch. Biochem.,23: 256–261. 1949.

    PubMed  CAS  Google Scholar 

  231. 225.

    Texera, D. A. Production of antibiotic substances by Fusaria. Phytopathology38: 70–81. 1948.

    Google Scholar 

  232. 226.

    Thom. C. The Penicillia. 1930.

  233. 227.

    Thom. C. andRaper, K. B. A manual of the Aspergilli. 1945.

  234. 228.

    Timonin, M. I. Another mould with antibacterial ability. Science96: 494. 1942.

    PubMed  Google Scholar 

  235. 229.

    Tobie, W. C. andAlverson, C. The rapid recognition of aspergillic acid. Jour. Bact.54: 543–544. 1947.

    CAS  Google Scholar 

  236. 230.

    Uroma, E. andVirtanen, O. E. Antibiotics of yeasts. Ann. Med. Exp. et Biol. Fenn.25: 36–47. 1947. Abs. in Biol. Abs.22: 21410. 1948.

    CAS  Google Scholar 

  237. 231.

    Vischer, E. B. et al. Viridin. Nature (London)165: 528. 1950.

    CAS  Google Scholar 

  238. 232.

    Waksman, S. A. andBugie, E. Strain specificity and production of antibiotic substances. II.Aspergillus flavus-oryzae group. Proc. Nat. Acad. Sci. (Wash.)29: 282. 1943.

    CAS  Google Scholar 

  239. 233.

    — and —. Chaetomin, a new antibiotic substance produced byChaetomium cochliodes. I. Formation and properties. Jour. Bact.48: 527–536. 1944.

    CAS  Google Scholar 

  240. 234.

    — andHorning, E. S. Distribution of antagonistic fungi in nature and their antibiotic action. Mycologia35: 47–65. 1943.

    CAS  Google Scholar 

  241. 235.

    et al. The production of two antibacterial substances fumigacin and clavacin. Science96: 202–203. 1942.

    PubMed  CAS  Google Scholar 

  242. 236.

    et al. Two antagonistic fungi,A fumigatus andA. clavatus, and their antibiotic substances. Jour. Bact.45: 233–248. 1943.

    CAS  Google Scholar 

  243. 237.

    Wedekind, E. andFleischer, K. Über die Konstitution des Sparassols. Ber. Deut. Chem. Ges.56: 2556–2563. 1923.

    Google Scholar 

  244. 238.

    Weindling, R. T. lignorum as a parasite of other soil fungi. Phytopathology22: 837–845. 1932.

    Google Scholar 

  245. 239.

    — Studies on a lethal principle effective in the parasitic action ofTrichoderma lignorum onRhizoctonia solani and other soil fungi. Phytopathology24: 1153–1179. 1934.

    Google Scholar 

  246. 240.

    — Isolation of toxic substances from the culture filtrates ofTrichoderma andGliocladium. Phytopathology27: 1175–1177. 1937.

    CAS  Google Scholar 

  247. 241.

    — Experimental consideration of the mold toxins ofGliocladium andTrichoderma. Phytopathology31: 991–1003. 1941.

    CAS  Google Scholar 

  248. 242.

    — andEmerson, O. H. The isolation of a toxic substance from the culture filtrate ofTrichoderma. Phytopathology26: 1068–1070. 1936.

    CAS  Google Scholar 

  249. 243.

    White, E. C. Antibacterial filtrates from cultures ofAspergillus flavipes. Proc. Soc. Exp. Biol., N. Y.54: 258–259. 1943.

    Google Scholar 

  250. 244.

    — andHill, J. H. Studies on antibacterial products formed by molds. I. Aspergillic acid, a product of a strain ofAspergillus flavus. Jour. Bact.45: 433–444. 1945.

    Google Scholar 

  251. 245.

    White, W. L. andDowning, M. H. The identity ofMetarrhizium glutinosum. Mycologia39: 546–555. 1947.

    Google Scholar 

  252. 246.

    et al. History, distribution and economic significance of the cellulose-destroying fungusMemnoniella echinata. Farlowia3: 399–423. 1949.

    Google Scholar 

  253. 247.

    Wiedling, S. The production of antibiotics byPenicillium species. Bot. Not.4: 433–443. 1944.

    Google Scholar 

  254. 248.

    Wiesner, B. P. Bactericidal effects ofAspergillus clavatus. Nature (London)149: 356–357. 1942.

    Google Scholar 

  255. 249.

    Wiken, T. Examination of extracts from sporophores of Swedish Hymenomycetes for antibiotic activity againstPullularia pullulans (de Bary et Loew) Berkhout. Ark. Bot.33A: 1–10. 1946.

    Google Scholar 

  256. 250.

    — andOblom, K. Examination of extracts from sporophores of Swedish Hymenomycetes for antibiotic activity againstStaphylococcus aureus. Ark. Bot.33A: 1–15. 1946.

    Google Scholar 

  257. 251.

    Wilkins, W. H. Investigation into the production of bacteriostatic substances by fungi. Cultural work on Basidiomycetes. Trans. Brit. Mycol. Soc.28: 110–114. 1945.

    Google Scholar 

  258. 252.

    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of more of the larger Basidiomycetes and some of the large Ascomycetes. Ann. Appl. Biol.33: 188–189. 1946.

    Google Scholar 

  259. 253.

    — Investigations into the production of bacteriostatic substances by fungi. Preliminary examination of the fifth 100 species, all Basidiomycetes, mostly of the wood-destroying type. Brit. Jour. Exp. Path.27: 140–142. 1946.

    Google Scholar 

  260. 254.

    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examinations of the sixth 100 species, more Basidiomycetes of the wood-destroying type. Brit. Jour. Exp. Path.28: 53–56. 1947.

    Google Scholar 

  261. 255.

    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the seventh 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.28: 247–252. 1947.

    Google Scholar 

  262. 256.

    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the eighth 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.28: 416–417. 1947.

    Google Scholar 

  263. 257.

    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the ninth 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.29: 364–366. 1948.

    Google Scholar 

  264. 258.

    — andHarris, G. C. M. Investigation into the production of bacteriostatic substances by fungi. I. Preliminary examination of 100 fungal species. Brit. Jour. Exp. Path.23: 166–169. 1942.

    CAS  Google Scholar 

  265. 259.

    — and — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of a second 100 species. Brit. Jour. Exp. Path.24: 141–143. 1943.

    CAS  Google Scholar 

  266. 260.

    — and — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of a fourth 100 species, allPenicillia. Brit. Jour. Exp. Path.25: 135–137. 1944.

    Google Scholar 

  267. 261.

    — and — Investigation into the production of bacteriostatic substances by fungi. V. Preliminary examination of the third 100 fungi with special reference to strain variation among species ofAspergillus. Trans. Brit. Mycol. Soc.27: 113–118. 1945.

    Google Scholar 

  268. 262.

    — and — Investigation into the production of bacteriostatic substances by fungi. VI. Examination of the larger Basidiomycetes. Ann. Appl. Biol.31: 261–270. 1944.

    Google Scholar 

  269. 263.

    Willstaedt, H. Über die Farbstoffe des echten Reizkers (Lactarius deliciosus L.) (Mitteil. I.). Ber. Deut. Chem. Ges.68B: 333–340. 1935.

    CAS  Google Scholar 

  270. 264.

    — andZetterberg, B. Lactaroviolin, ein gegen Tuberkel-bacillen in vitro wirksames Antibioticum. Svensk Kemisk Tidskr.58: 306–307. 1947. Abs. in Biol. Abs.21: 2273, 1947.

    Google Scholar 

  271. 265.

    Wintersteiner, O. andDutcher, J. D. Chemistry of antibiotics. Ann. Rev. Biochem.18: 559–594. 1949.

    CAS  Google Scholar 

  272. 266.

    Wollenweber, H. W. andReinking, O. A. Die Fusarien. 1935.

  273. 267.

    Woodward, C. R. Production of aspergillic acid by surface cultures ofAspergillus flavus. Jour. Bact.54: 375–380. 1947.

    CAS  Google Scholar 

  274. 268.

    Woodward, R. B. andSingh, G. The structure of patulin. Jour. Am. Chem. Soc.71: 758–759. 1949.

    CAS  Google Scholar 

  275. 269.

    — and — The synthesis of patulin. Jour. Chem. Soc.72: 1428. 1950.

    CAS  Google Scholar 

  276. 270.

    Woolley, D. W. Strepogenin activity of seryl glycyl glutamic acid. Jour. Biol. Chem.166: 783–784. 1946.

    CAS  Google Scholar 

  277. 271.

    — Studies on the structure of lycomarasmin. Jour. Biol. Chem.176: 1291–1298. 1948.

    CAS  Google Scholar 

  278. 272.

    Yabuta, A. On kojic acid, a new organic acid formed byAspergillus oryzae. Jour. Coll. Agr. (Tokyo)5: 51–58. 1912.

    Google Scholar 

  279. 273.

    — andSumiki, Y. Ochracin, a new metabolic product ofAspergillus ochraceus. Jour. Agr. Chem. Soc. (Japan)9: 1264–1275. 1933.

    CAS  Google Scholar 

  280. 274.

    — and — Chemical constitution of ochracin (a fermentation product byAspergillus ochraceus). Jour. Agr. Chem. Soc. (Japan)10: 703–714. 1934.

    CAS  Google Scholar 

  281. 275.

    Yasue, Y. Studies on the antibacterial action of fusaric acid, a metabolic product of the causative mould of the “Bakanae” disease of rice plants. Jour. Antibiotics2: 255–264. 1949.

    Google Scholar 

  282. 276.

    Yermolieva, Z. V. et al. Penicillin-crustosin. Zhur. Microbiol., Epidem., i Immunobiol. (Moscow) 79–84. 1944.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brian, P.W. Antibiotics produced by fungi. Bot. Rev 17, 357–430 (1951). https://doi.org/10.1007/BF02879038

Download citation

Keywords

  • Botanical Review
  • Culture Filtrate
  • Antibiotic Produce
  • Citrinin
  • Patulin