The Botanical Review

, Volume 17, Issue 6, pp 357–430 | Cite as

Antibiotics produced by fungi

  • P. W. Brian

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Abraham, E. P. The effect of mycophenolic acid on the growth ofStaphylococcus aureus in heart broth. Biochem. Jour.39 398–408. 1945.Google Scholar
  2. 2.
    Ainsworth, G. C. andBisby, G. R. A dictionary of the fungi. 2nd ed. 1945.Google Scholar
  3. 3.
    Alsberg, C. L. andBlack, G. R. Contributions to the study of maize deterioration; biochemical and toxicological investigations ofPenicillium puberulum andPenicillium stoloniferum. U. S. Dept. Agr. Bur. Pl. Ind., Bul.270: 1–47. 1913.Google Scholar
  4. 4.
    Anchel, M. et al. Antibiotic substances from Basidiomycetes. III.Coprinus similis andLentinus degener. Proc. Nat. Acad. Sci. (Wash.)34: 498–502. 1948.Google Scholar
  5. 4a.
    et al. Antibiotic substances from Basidiomycetes. VII.Clitocybe illudens. Proc. Nat. Acad. Sci. (Wash.)36: 300–305. 1950.Google Scholar
  6. 5.
    Anslow, W. K. andRaistrick, H. Studies in the biochemistry of microorganisms. 19. 6-hydroxy-2-methylbenzoic acid, a product of the metabolism of glucose byPenicillium griseofulvum Dierckx. Biochem. Jour.25: 39–44. 1931.Google Scholar
  7. 6.
    — and — Studies in the biochemistry of microorganisms. 57. Fumigatin and spinulosin, metabolic products, respectively, ofAspergillus fumigatus Fresenius andPenicillium spinulosum Thom. Biochem. Jour.32: 687–696. 1938.Google Scholar
  8. 7.
    — and — Studies in the biochemistry of microorganisms. 58. Synthesis of spinulosin (3∶6-dihydroxy-4-methoxy-2∶5-toluquinone), a metabolic product ofPenicillium spinulosum Thom. Biochem. Jour.32: 803–806. 1938.Google Scholar
  9. 8.
    — and — Studies in the biochemistry of microorganisms. 59. Spinulosin (3∶6-dihydroxy-4-methoxy-2∶5-toluquinone) a metabolic product of a strain ofAspergillus fumigatus Fresenius. Biochem. Jour.32: 2288–2289. 1938.Google Scholar
  10. 9.
    et al. Antifungal substances from moulds. Part I. Patulin (anhydro-3-hydroxymethylene tetrahydro-1∶4-pyrone-2-carboxylic acid) a metabolic product ofPenicillium patulum Bainier andP. expansum (Link) Thom. Jour. Soc. Chem. Ind. (London)62: 236–238. 1943.Google Scholar
  11. 10.
    Arnstein, H. R. V. andCook, A. H. Production of antibiotics by fungi. Part III. Javanicin. An antibacterial pigment fromFusarium javanicum. Jour. Chem. Soc. 1021–1028. 1947.Google Scholar
  12. 11.
    et al. Production of antibiotics by fungi. II. Production byFusarium javanicum and otherFusaria. Brit. Jour. Exp. Path.27: 349–355. 1946.Google Scholar
  13. 12.
    Atkinson, N. Antibacterial substances produced by moulds. I. Penicidin, a product of the growth of a penicillium. Aust. Jour. Exp. Biol. & Med. Sci.20: 287. 1942.Google Scholar
  14. 13.
    — Antibacterial substances produced by moulds. 2. The antibacterial substances produced by some common Penicillia. Aust. Jour. Exp. Biol. & Med. Sci.21: 15–16. 1943.Google Scholar
  15. 14.
    — Toadstools and mushrooms as a source of antibacterial substances active againstMycobacterium phlei andBact. typhosum. Nature (London)157: 441. 1946.Google Scholar
  16. 15.
    et al. Antibacterial substances produced by moulds. VI. The production of crystalline penicidin. Aust. Jour. Exp. Biol. & Med. Sci.22: 223–226. 1944.Google Scholar
  17. 16.
    Baker, W. andRaistrick, H. Derivatives of 1∶2∶3∶4-tetrahydroxybenzene. Part VII. The synthesis of fumigatin. Jour. Chem. Soc. 670–672. 1941.Google Scholar
  18. 17.
    Barger, G. andDorrer, O. Chemical properties of puberulic acid, C8H6O6, and a yellow acid, C8H4O6. Biochem. Jour.28: 11–15. 1934.Google Scholar
  19. 18.
    Barta, J. andMečiř, R. Antibacterial activity ofPenicillium divergens Bainier. Experientia4: 277–278. 1948.Google Scholar
  20. 19.
    Baxter, R. A. andSpring, F. S. Pyrazine derivatives. Part III. Conversion of diketopiperazines into pyrazine derivatives. Synthesis of 2-hydroxy-3∶6-di-sec.-butyl-pyrazine fromisoleucine. Jour. Chem. Soc. 1179–1183. 1927.Google Scholar
  21. 20.
    Bayliss, M. Effect of the chemical constitution of soaps upon their germicidal properties. Jour. Bact.31: 489–504. 1936.Google Scholar
  22. 21.
    Bendz, G. An antibiotic agent fromMarasmius graminum. Acta Chem. Scand.2: 192. 1948.Google Scholar
  23. 22.
    et al. The antibiotic agent fromMarasmius ramealis. Nature (London)162: 61–62. 1948.Google Scholar
  24. 23.
    Bergel, F. et al. An antibacterial substance fromAspergillus clavatus andPenicillium claviforme and its probable identity with patulin. Nature (London)152: 750. 1943.Google Scholar
  25. 24.
    Bernhauer, K. et al. Ein Beitrag zur Penicillinbildung durchPenicillium-Arten. Zeit. Naturf.5b: 103–111. 1950.Google Scholar
  26. 25.
    Birkinshaw, J. H. et al. Studies in the biochemistry of microorganisms. 78. The molecular constitution of mycophenolic acid, a metabolic product ofPenicillium brevicompactum Dierckx. Part II. Possible structural formulae for mycophenolic acid. Biochem. Jour.43: 216–223. 1948.Google Scholar
  27. 26.
    et al. Studies in the biochemistry of microorganisms. 72. Gentisyl alcohol (2∶5-dihydroxybenzyl alcohol), a metabolic product ofPenicillium patulum Bainier. Biochem. Jour.37: 726–728. 1943.Google Scholar
  28. 27.
    et al. Studies in the biochemistry of microorganisms. 70. Stipitatic acid, C8H6O5 a metabolic product ofPenicillium stipitatum Thom. Biochem. Jour.36: 242. 1942.Google Scholar
  29. 28.
    et al. Studies in the biochemistry of microorganisms. Part VII. Kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone). Philos. Trans.220B: 127–138. 1931.Google Scholar
  30. 29.
    et al. Patulin in the common cold. Collaborative research on a derivative ofPenicillium patulum Bainier. Lancet2: 625–630. 1943.Google Scholar
  31. 30.
    et al. Studies in the biochemistry of microorganisms. XLVIII. Penicillic acid, a metabolic product ofPenicillium puberulum Bainier andP. cyclopium Westling. Biochem. Jour.30: 394–411. 1936.Google Scholar
  32. 31.
    — andRaistrick, H. Studies in the biochemistry of microorganisms. Part XII. On a new methoxy-hydroxy-toluquinone produced from glucose by species ofPenicillium of theP. spinulosum series. Philos. Trans.220B: 245–254. 1931.Google Scholar
  33. 32.
    — and — Studies in the biochemistry of microorganisms. XXIII. Puberulic acid C8H6O6 and an acid C8H4O6, new products of the metabolism of glucose byPenicillium puberulum Bainier andPenicillium aurantio-virens Biourge. With an appendix on certain dihydroxybenzenedicarboxylic acids Biochem. Jour.26: 441–453. 1932.Google Scholar
  34. 33.
    et al. Studies in the biochemistry of microorganisms. Fumaryl-dl-alanine (Fumaromono-dl-alanide), a metabolic product ofPenicillium resticulosum sp. nov. Biochem. Jour.36: 829–835. 1942.Google Scholar
  35. 34.
    Bisby, G. R. Trichoderma viride Pers. ex Fries, and notes onHypocrea. Trans. Brit. Mycol. Soc.23: 149–168. 1939.Google Scholar
  36. 35.
    Björkman, E. Soil antibiotics acting against the root-rot fungus (Polyporus annosus Fr.). Physiol. Plant.2: 1–10. 1949.Google Scholar
  37. 36.
    Borodin, N. et al. An antibiotic fromPenicillium tardum. Brit. Jour. Exp. Path.28: 31–34. 1947.Google Scholar
  38. 37.
    Borzini, G. Sull'attività antibiotica delFomes officinalis (Will.) Fr. Atti V3: 277–278. 1949.Google Scholar
  39. 38.
    et al., Ricerche sull'attività antibiotica di alcuni Basidiomyceti. Atti V3: 279–281. 1949.Google Scholar
  40. 39.
    Bose, S. R. Antibacterial action of ‘polyporin’ against typhoid, cholera, dysentery andB. coli. Nature (London)156: 171. 1945.Google Scholar
  41. 40.
    —. Antibiotics in a polyporus (Polystictus sanguineus) Nature (London)158: 292–296. 1946.Google Scholar
  42. 41.
    Bracken, A. andRaistrick, H. Studies in the biochemistry of microorganisms. 75. Dehydrocarolic acid, a metabolic product ofPenicillium cinerascens Biourge. Biochem. Jour.41: 569–574. 1947.Google Scholar
  43. 42.
    Brian, P. W. Production of gliotoxin byTrichoderma viride. Nature (London)154: 667. 1944Google Scholar
  44. 43.
    — Production of gliotoxin byPenicillium terlikowski Zal. Trans. Brit. Mycol. Soc.29: 211–218. 1946.Google Scholar
  45. 44.
    — Studies on the biological activity of griseofulvin. Ann. Bot. (London)13: 59–77. 1949.Google Scholar
  46. 45.
    Brian, P. W. The production of antibiotics by microorganisms in relation to biological equilibria in soil. Symp. Soc. Exp. Biol. III. (Antibiotics) 357–372. 1949.Google Scholar
  47. 46.
    Brian, P. W. (Unpublished). 1950.Google Scholar
  48. 47.
    et al. Gladiolic acid: an antifungal and antibacterial metabolic product ofPenicillium gladioli McCull. & Thom. Nature (London)157: 697. 1946.Google Scholar
  49. 48.
    et al. A substance causing abnormal development of fungal hyphae produced byPenicillium janczewskii Zal. I. Biological assay, production and isolation of ‘curling factor’. Trans. Brit. Mycol. Soc.29: 173–187. 1946.Google Scholar
  50. 49.
    et al. Glutinosin: a fungistatic metabolic product of the mouldMetarrhizium glutinosum S. Pope. Proc. Royal Soc.135B: 106–132. 1947.Google Scholar
  51. 50.
    et al. Gladiolic acid, an antibiotic substance produced byPenicillium gladioli McCull. & Thom. Jour. Gen. Microbiol.2: 341–355. 1948.Google Scholar
  52. 51.
    Brian, P. W. et al. A substance causing abnormal development of fungal hyphae produced byPenicillium janczewskii Zal. III. Identity of ‘curling factor’ with griseofulvin. Trans. Brit. Mycol. Soc.32: 1949.Google Scholar
  53. 52.
    et al. The production of viridin by pigment-forming strains ofTrichoderma viride. Ann. Appl. Biol.33: 190–200. 1946.Google Scholar
  54. 53.
    et al. Alternaric acid, a biologically active metabolic product of the fungusAlternaria solani. Nature (London)165: 534. 1949.Google Scholar
  55. 54.
    Brian, P. W. et al. Three new antibiotics from a species ofGliocladium. Experientia 1951. [In press]Google Scholar
  56. 55.
    — andHemming, H. G. Gliotoxin, a fungistatic metabolic product ofTrichoderma viride. Ann. Appl. Biol.32: 214–220. 1945.Google Scholar
  57. 56.
    — and — Production of antifungal and antibacterial substances by fungi: preliminary examination of 166 strains of Fungi Imperfecti. Jour. Gen. Microbiol.1: 158–167. 1947.Google Scholar
  58. 57.
    et al. Production of antibiotics by species ofMyrothecium. Mycologia40: 363–368. 1948.Google Scholar
  59. 58.
    Brian, P. W. et al. (Unpublished results). 1950.Google Scholar
  60. 59.
    et al. Origin of a toxicity to mycorrhiza in Wareham Heath soil. Nature (London)155: 637. 1945.Google Scholar
  61. 60.
    — andMcGowan, J. C. Viridin: a highly fungistatic substance produced byTrichoderma viride. Nature (London)156: 144. 1945.Google Scholar
  62. 61.
    — and —. Biologically active metabolic products of the mouldMetarrhizium glutinosum S. Pope. Nature (London)157: 334. 1946.Google Scholar
  63. 62.
    Brotzu, G. Researches on a new antibiotic. Lav. Ist. Igiene Univ. Cagliari 1940–1946. 1949. Abs. in Bull. Hyg. (London)24: 804. 1949.Google Scholar
  64. 63.
    Burton, H. S. Antibiotics from Penicillia. Brit. Jour. Exp. Path.30: 151–158.Google Scholar
  65. 64.
    — Antibiotics fromAspergillus melleus. Nature (London).165: 274–275. 1950.Google Scholar
  66. 65.
    Bush, M. T. andGoth, A. An antibacterial substance produced byAspergillus flavus. Fed. Proc.2: 75. 1943.Google Scholar
  67. 66.
    — and —. Flavicin: an antibacterial substance produced by anAspergillus flavus. Jour. Pharmacol.78: 164–169. 1943.Google Scholar
  68. 67.
    Calam, C. T. et al.. Studies in the biochemistry of microorganisms. 74. The molecular constitution of geodin and erdin, two chlorine-containing metabolic products ofA. terreus Thom. Part 3. Possible structural formulae for geodin and erdin. Biochem. Jour.41: 458–462. 1947.Google Scholar
  69. 68.
    Campbell, A. H. et al. Nitrogenous substances synthesised by moulds. Nature (London)155: 141. 1945.Google Scholar
  70. 69.
    Cartwright, N. J. et al. A synthesis of citrinin. Nature (London).163: 94. 1949.Google Scholar
  71. 70.
    Cercos, A. P. Accion antibiotica deSeptoria nodorum. Rev. Inv. Agr.3: 27–30. 1949.Google Scholar
  72. 71.
    Chain, E. et al. An antibacterial substance produced byPenicillium claviforme. Brit. Jour. Exp. Path.23: 202–205. 1942.Google Scholar
  73. 72.
    Chain, E. et al. Identity of patulin and claviformin. Lancet 112–114. 1944.Google Scholar
  74. 73.
    et al., Helvolic acid, an antibiotic produced byAspergillus fumigatus mut.helvola Yull. Brit. Jour. Exp. Path.24: 108–119. 1943.Google Scholar
  75. 74.
    Chastukhin, V. Ya. andNikolaevskaya, M. A. Ecological study of fungi which form antibiotics. Mikrobiologiya17: 3–9. 1948. Abs. in Chem. Abs.42: 8883. 1949.Google Scholar
  76. 75.
    Chaze, J. Sur les propriétés abiotiquesin vitro du mycélium végétatif deTuber melanosporum. Comp. Rend. Acad. Sci. (Paris)224: 491–493. 1947.Google Scholar
  77. 76.
    Clutterbuck, P. W. et al. Studies in the biochemistry of microorganisms. 55. The molecular constitution of geodin and erdin, two chlorine-containing metabolic products ofAspergillus terreus Thom. Biochem. Jour.31: 1089–1092. 1937.Google Scholar
  78. 77.
    et al. Studies in the biochemistry of microorganisms. 24. The metabolic products of thePenicillium brevicompactum series Biochem. Jour.26: 1441–1458. 1932.Google Scholar
  79. 78.
    — andRaistrick, H. Studies in the biochemistry of microorganisms. 31. The molecular constitution of the metabolic products ofPenicillium brevicompactum Dierckx and related species. II. Mycophenolic acid. Biochem. Jour.27: 654–667. 1933.Google Scholar
  80. 79.
    Cook, A. H. et al. Antibiotics produced by fungi, and a new phenomenon in optical resolution. Nature (London)162: 61. 1948.Google Scholar
  81. 80.
    et al. Production of antibiotics byFusaria. Nature (London)160: 31–32. 1947.Google Scholar
  82. 81.
    — andLacey, M. S. An antibiotic fromAspergillus parasiticus. Nature (London)153: 460. 1944.Google Scholar
  83. 82.
    — and — Production of antibiotics by fungi Brit. Jour. Exp. Path.26: 404–409. 1945.Google Scholar
  84. 83.
    Corbett, R. E. et al. Puberulic, puberulonic and stipitatic acids. Chem. Ind. 626. 1949.Google Scholar
  85. 84.
    Coulthard, C. E. et al. Notatin: an antibacterial glucose-aerodehydrogenase fromPenicillium notatum Westling andPenicillium resticulosum sp. nov. Biochem. Jour.39: 24–36. 1945.Google Scholar
  86. 85.
    et al. Notatin: an antibacterial glucose aerodehydrogenase fromPenicillium notatum Westling. Nature (London)150: 634–635. 1942.Google Scholar
  87. 86.
    Coyne, F. P. et al. Studies in the biochemistry of microorganisms. XV. The molecular structure of citrinin. Philos. Trans.220B: 297–301. 1931.Google Scholar
  88. 87.
    Cross, L. C. et al. Constituents, of the higher fungi. Part I. the triterpene acids ofPolyporus betulinus Fr. Jour. Chem. Soc. 632–636. 1940.Google Scholar
  89. 88.
    Curtin, T. et al. Production of phoenicine on synthetic media. 1.Penicillium phoeniceum van Beyma. 2.Penicillium rubrum Grasberger-Stoll. Biochem. Jour.34: 1605–1610. 1940.Google Scholar
  90. 89.
    Curtis, P. J. (Unpublished results). 1950.Google Scholar
  91. 90.
    — and — A fungistatic and bacteriostatic red pigment produced by a strain of thePenicillium nigricans-janczewskii series. Nature (London)160: 574. 1947.Google Scholar
  92. 91.
    Curtis, P. J. et al. (Unpublished results). 1950.Google Scholar
  93. 91.
    a.—et al. Frequentin: an antibiotic produced by some strains ofPenicillium frequentans Westling. Nature (London)167: 557. 1951.Google Scholar
  94. 92.
    Davoli, R. An antibiotic fromAspergillus ustus Sperimentale99: 197–208. 1948. Abs. in Chem. Abs.43: 3489. 1949.PubMedGoogle Scholar
  95. 93.
    Doering, W. E. et al. Metabolic products ofAspergillus ustus Jour. Am. Chem. Soc.68: 725–726. 1946.Google Scholar
  96. 94.
    Dunn, G. et al. Structure of the antibacterial compound, aspergillic acid. Nature (London)162: 779. 1948.Google Scholar
  97. 95.
    Dutcher, J D. Aspergillic acid: an antibiotic substance produced byAspergillus flavus., I. General properties; formation of desoxyaspergillic acid; structural conclusions. Jour. Biol. Chem.171: 321–339. 1947.Google Scholar
  98. 96.
    — Aspergillic acid: an antibiotic substance produced byAspergillus flavus. II. Bromination reations and reduction with sodium and alcohol. Jour. Biol. Chem.171: 341–353. 1947.Google Scholar
  99. 97.
    — andWintersteiner, O. Structure of aspergillic acid. Jour. Biol. Chem.155: 359. 1944.Google Scholar
  100. 98.
    et al. Structural, inverstigation of hydroxyaspergillic acid, an antibiotic, substance produced byAspergillus flavus. Fed. Proc.7: 152–153. 1948.Google Scholar
  101. 99.
    Duyvene De Wit, J. J. et al. De Isoleering van een bactericide en fungicide stof mit een penseelschimmel. Ned. Tijdschr. Geneesk.88: 718–719. 1944.Google Scholar
  102. 100.
    Engel, B. G. andBrzeski, W. Über die, Isolierung eines Chinhydrons von Gentisinalkohol und Oxymethyl-p-benzochinon (Gentisinchinon) aus dem Kulturfeltrat vonPenicillium urticae Bainier Helv. Chim. Acta.30: 1472–1478. 1947.Google Scholar
  103. 101.
    Falck, R. Über ein krystallisiertes Stoffwechselprodukt vonSparassis ramosa Schäff. Ber. Deut. Chem. Ges.56B: 2555–2556. 1923.Google Scholar
  104. 102.
    Florey, H. W. et al. Antibiotics. 2 vols. 1949.Google Scholar
  105. 103.
    et al. Penicillin-like antibiotics from various species of moulds. Nature (London)159 268. 1944.Google Scholar
  106. 104.
    et al. Mycophenolic acid: an antibiotic fromPenicillium brevicompactum Dierckx. Lancet1: 46–49. 1946.Google Scholar
  107. 105.
    et al. Claviformin fromAspergillus giganteus Wehm. Nature (London)153: 139. 1944.Google Scholar
  108. 106.
    Foster, J. W. andKarow, E. O. Microbiological aspects of penicillin. VIII. Penicillin from different fungi. Jour. Bact.49: 19–29. 1945.Google Scholar
  109. 107.
    Fragner, P. A new antibacterial substance fromInoloma traganum (Inolomin). Experientia5: 167. 1949.PubMedGoogle Scholar
  110. 108.
    Freeman, G. G. andMorrison, R. I. Trichothecin: an antifungal metabolic product ofTrichothecium roseum Link. Nature (London)162: 30. 1948.Google Scholar
  111. 109.
    — and — Some biological properties of trichothecin, an antifungal substance fromTrichothecium roseum Link. Jour. Gen. Microbiol.3: 60–68. 1949.Google Scholar
  112. 110.
    — and — The isolation and chemical properties of trichothecin, an antifungal substance fromTrichothecium roseum Link. Biochem. Jour.44: 1–5. 1949.Google Scholar
  113. 110.
    Freeman, G. G. andGill, J. E. Private communication to author. 1950.Google Scholar
  114. 111.
    et al. Metabolic products ofTrichothecium roseum Link. Biochem. Jour.45: 191–199. 1949.Google Scholar
  115. 112.
    Friedheim, E. A. H. Recherches sur la biochimie des champignons inférieurs. I. Isolement du pigment rouge dePenicillium phoeniceum (Phoenicine). Helv. Chim. Acta21: 1464–1465. 1938.Google Scholar
  116. 113.
    Furtado, A. R. Pesquisa da atividade antibacteriana com 180 amostras deAspergillus Micheli,1729 Mem. Inst. Osw. Cruz41: 205–222. 1944.Google Scholar
  117. 113.
    Galloway, L. D. A puzzle for mycologists. Food Manuf. 506. December, 1950.Google Scholar
  118. 114.
    Gäumann, E. andJaag, O. Die physiologischen Grundlagen des parasitogenen Welkens. I. Ber. Schweiz. Bot. Ges.57: 3–34. 1947.Google Scholar
  119. 115.
    — and — Die physiologischen Grundlagen des parasitogenen Welkens. II. Ber. Schweiz. Bot. Ges.57: 132–148. 1947.Google Scholar
  120. 116.
    et al. Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum. Experientia3: 202–203. 1947.Google Scholar
  121. 117.
    Geiger, W. B. Chetomin, an antibiotic substance fromChaetomium cochliodes. III. Composition and functional groups. Arch. Biochem.21: 125. 1949.PubMedGoogle Scholar
  122. 118.
    et al. Chaetomin. II. Isolation and concentration. Jour. Bact.48: 531–536. 1944.Google Scholar
  123. 119.
    Gill-Carey, D. Antibiotics from Aspergilli. Brit. Jour. Exp. Path.30: 114–118. 1949.Google Scholar
  124. 120.
    — The nature of some antibiotics from Aspergilli. Brit. Jour. Exp. Path.30: 119–123. 1949.Google Scholar
  125. 121.
    Gilliver, K. The inhibitory action of antibiotics on plant pathogenic bacteria and fungi. Ann. Bot. (London)10: 271–282. 1946.Google Scholar
  126. 122.
    Gilman, J. C. andAbbott, E. V. A summary of the soil fungi. Iowa State Coll. Jour. Sci.1: 225–345. 1927.Google Scholar
  127. 123.
    Gould, B. S. CVII. The metabolism ofAspergillus tamarii Kita. Kojic acid production. Biochem. Jour.32: 797–802. 1938.Google Scholar
  128. 124.
    Grosser, A. andFriedrich, W. Über die Bildung von 6-Methylsalicylsäure durchPenicillium claviforme Bain. Zeits. Naturf.3b: 380–381. 1948.Google Scholar
  129. 125.
    Grove, J. F. (Unpublished result). 1950.Google Scholar
  130. 125.
    Grove, J. F. andBrian, P. W. The identity of frequentic acid and citromycetin. Nature (London) 1951. [In press]Google Scholar
  131. 126.
    — andMcGowan, J. C. Identity of griseofulvin and «curling factor». Nature (London)160: 574. 1947.Google Scholar
  132. 127.
    Grove, J. F. andMcGowan, J. C. Some applications of physical chemistry to the study of cetrain biologically active compounds. Chem. Ind. 647–652. 1949.Google Scholar
  133. 128.
    Grove, W. B. British stem and leaf fungi. 2 vols. 1935–37.Google Scholar
  134. 129.
    Harris, H. A. Heterothallic antibiosis inMucor racemosus. Mycologia40: 347–351. 1948.Google Scholar
  135. 130.
    Haskins, R. H. Biochemistry of the Ustilaginales. I. Preliminary cultural studies ofUstilago zeae. Canad. Jour. Res. C28: 213–223. 1950.Google Scholar
  136. 131.
    Heatley, N. G. et al. Antibiotics fromStereum hirsutum. Brit. Jour. Exp. Path.28: 35–46. 1947.Google Scholar
  137. 132.
    Hemming, H. G. et al. (Unpublished results). 1950.Google Scholar
  138. 133.
    Hervey, A. H. A survey of 500 basidiomycetes for antibacterial activity. Bull. Torrey Bot. Club74: 476–503. 1947.Google Scholar
  139. 134.
    Hetherington, A. C. andRaistrick, H. Studies in the biochemistry of microorganisms. Part XI. On citromycetin, a new yellow colouring matter produced from glucose by species ofCitromyces. Philos. Trans.220B: 209–244. 1931.Google Scholar
  140. 134a.
    — and — Studies in the biochemistry of microorganisms. Part XIV. On the production and chemcial constitution of a new yellow colouring matter, citrinin, produced from glucose byPenicillium citrinum Thom. Philos. Trans.220B: 269–294. 1931.Google Scholar
  141. 135.
    Hogeboom, G. H. andCraig, L. C. Identification by distribution studies. I. Isolation of antibiotic principles fromAspergillus ustus. Jour. Biol. Chem.162: 363–368. 1946.Google Scholar
  142. 136.
    Hollande, A. C. Lyse massive des bacilles de Koch chez le cobaye après traitement de la clitocybine. Pouvoir inhibiteur de ce produit vis-à-vis du bacille typhique, des colibacilles, deBrucella abortus etc. Comp. Rend. Acad. Sci. (Paris),221: 361–363. 1946.Google Scholar
  143. 137.
    — L'action de la clitocybine sur le bacille tuberculeux et autres microbes. Atomes3: 1–5. 1946.Google Scholar
  144. 138.
    — La bacteriostase et al bacteriolyse du bacille tuberculeux par la clitocybine. Comp. Rend. Acad. Sci. (Paris)224: 1534–1536. 1947.Google Scholar
  145. 139.
    — A propos de la clitocybine cristallisée. Comp. Rend. Acad. Sci. (Paris)228: 1758. 1949.Google Scholar
  146. 140.
    Hooper, I. R. et al. The identity of clavacin with patulin. Science99: 16. 1944.PubMedGoogle Scholar
  147. 141.
    Jennings, M. A. andWilliams, T. I. Production of kojic acid byAspergillus effusus Tir. Nature (London)155: 302. 1945.Google Scholar
  148. 142.
    Johns, M. E. et al. Moulds producing penicillin-like antibiotics. Nature (London)158: 446. 1946.Google Scholar
  149. 143.
    Johnson, J. R. et al. Gliotoxin, the antibiotic principle ofGliocladium fimbriatum. I. Production, physical, and biological properties. Jour. Am. Chem. Soc.65: 2005–2009. 1943.Google Scholar
  150. 144.
    Jones, H. et al. Studies onAspergillus flavus. I. Biological properties of crude and purified aspergillic acid. Jour. Bact.45: 461–469. 1943.Google Scholar
  151. 145.
    Karow, E. O. andFoster, J. W. An antibiotic substance from species ofGymnoascus andPenicillium. Science99: 265–266. 1944.PubMedGoogle Scholar
  152. 146.
    et al. Penicillic acid fromAspergillus ochraceus, Penicillium thomii andPenicillium suavolens. Arch. Biochem.5: 279–282. 1944.Google Scholar
  153. 147.
    Karrer, P. et al. Über Lactaroviolin, einen Farbstoff ausLactarius deliciosus. Helv. Chim. Acta28: 1176–1180. 1945.Google Scholar
  154. 148.
    Katzman, P. A. et al. Clavacin, an antibiotic substance fromAspergillus clavatus. Jour. Biol. Chem.154: 475. 1944.Google Scholar
  155. 149.
    Kavanagh, F. et al. Antibiotic substances from Basidiomycetes. IV.Marasmius conigenus. Proc. Nat. Acad. Sci. (Wash.)35: 343–349. 1949.Google Scholar
  156. 150.
    et al. Antibiotic substances from Basidiomycetes. V.Poria corticola, Poria tenuis and an unidentified Basidiomycete. Proc. Nat. Acad. Sci. (Wash.)36: 1–7. 1950.Google Scholar
  157. 151.
    et al. Antibiotic substances from Basidiomycetes. VI.Agrocybe dura. Proc. Nat. Acad. Sci. (Wash.)36: 102–106. 1950.Google Scholar
  158. 152.
    Kent, G. C. The inhibiting substance formed byDiplodia zeae. Phytopathology28: 12. 1938.Google Scholar
  159. 153.
    Kent, J. andHeatley, N. G. Antibiotics from moulds. Nature (London)156: 295–296. 1945.Google Scholar
  160. 154.
    Kodicek, E. The effect of unsaturated fatty acids on Gram-positive bacteria. Symp. Soc. Exp. Biol.3: 217–232. 1949.Google Scholar
  161. 155.
    Kondo, S. andTakahashi, B. Antibiotic substance obtained in crystalline form fromPenicillium. Jour. Penicillin (Japan)1: 147–150. 1947.Google Scholar
  162. 156.
    Krassilinikov, N. A. andKoreniako, A. I. Antibacterial peculiarities ofAspergillus niger. Microbiologiya14: 347–352. 1945.Google Scholar
  163. 157.
    Kurung, J. M. Aspergillus ustus. Science102: 11. 1945.PubMedGoogle Scholar
  164. 158.
    Locquin, M. et al. Recherches sur l'acide ungulinique (=acide polyporenique A), antibiotique produit parUngulina betulina. Rev. Mycol.13: 3–9. 1948.Google Scholar
  165. 159.
    Löfgren, N. et al. An antibiotic fromAgaricus (Clitocybe) nebularis Batsch active against mycobacteria. Svensk Farm. Tidskr.53: 321–323. 1949.Google Scholar
  166. 160.
    Luijk, A. Van. Antagonism between various microorganisms and different species of the genusPythium, parasitising upon grasses and lucerne. Med. Phytopath. Lab. Scholten.14: 43–82. 1938.Google Scholar
  167. 161.
    Lyanda-Geller, B. A. andMarkovich, A. V. Influence of nitrogen and carbohydrate nutrients on penicillin production byPenicillium crustosum. Mikrobiologiya16: 105–111. 1947.Google Scholar
  168. 162.
    McGowan, J. C. A study of the effects of certain classes of chemical substances upon microorganisms. London Univ., Ph.D. Thesis. 1949.Google Scholar
  169. 163.
    et al. The fungistatic activity of ethylenic and acetylenic compounds. I. The effect of the affinity of the substituents for electrons upon the biological activity of ethylenic compounds. Ann. Appl. Biol.35: 25–36. 1948.Google Scholar
  170. 164.
    McKee, C. M. andMacphillamy, H. B. An antibiotic substance produced by submerged cultivation ofAspergillus flavus. Proc. Soc. Exp. Biol., N. Y.53: 247–248. 1943.Google Scholar
  171. 165.
    et al. Aspergillus flavus. II. The production and properties of a penicillin-like substance, flavacidin. Jour. Bact.47: 187–197. 1944.Google Scholar
  172. 166.
    Marcus, S. Antibacterial activities of geodin and erdin. Biochem. Jour.41: 462–463. 1947.Google Scholar
  173. 167.
    Martin, G. W. Outline of the fungi. Univ. Ia. Stud. Nat. Hist.18: 1–40. 1941.Google Scholar
  174. 168.
    Mathieson, J. Antibiotics from Victorian Basidiomycetes. Aust. Jour. Exp. Biol. Med. Sci.24: 57–59. 1946.Google Scholar
  175. 169.
    May, O. E. et al. The production of kojic acid byAspergillus flavus. Jour. Am. Chem. Soc.53: 774–782. 1931.Google Scholar
  176. 170.
    Melin, E. et al. Antibiotics agents in the substrates from cultures of the genusMarasmius. Nature (London)159: 840. 1947.Google Scholar
  177. 171.
    Menzel, A. E. O. et al. The isolation of gliotoxin and fumigacin from culture filtrates ofAspergillus fumigatus. Jour. Biol. Chem.152: 419–429. 1944.Google Scholar
  178. 172.
    et al. Note on antibiotic substances elaborated by anAspergillus flavus strain and by an unclassified mould. Jour. Bact.46: 109. 1943.Google Scholar
  179. 173.
    Meyer, J. R. Bacteriostatic action of red ‘ear of corn’ (Polyporus cinnabarinus). Biologico10: 165–168. 1944. Abs. in Rev. Appl. Mycol.23: 493. 1944.Google Scholar
  180. 174.
    — Açào bacteriostática de um cogumelo macroscópico pertencente à familia das Poriporaceas ‘Polyporus cinnabarinus (Jacq.) Fries’. Arq. Inst. Biol. S. Paulo15: 27–36. 1944.Google Scholar
  181. 175.
    Michael, S. E. Studies in the biochemistry of microorganisms. 79. Fuscin, a metabolic product ofOidiodendron fuscum Robak. Part I. Preparation, properties and antibacterial activity. Biochem. Jour.43: 528–531. 1948.Google Scholar
  182. 176.
    Miller, D. K. andRekate, A. C. Inhibition of growth ofMycobacterium tuberculosis by a mould. Science100: 172–173. 1944.PubMedGoogle Scholar
  183. 177.
    Morton, H. E. et al. Toxicity and antibiotic activity of kojic acid produced byAspergillus luteo-virescens. Jour. Bact.50: 579–584. 1945.Google Scholar
  184. 178.
    Mull, R. P. et al. The production of gliotoxin and a second active isolate byPenicillium obscurum Biourge. Jour. Am. Chem. Soc.67: 1626–1627. 1945.Google Scholar
  185. 179.
    Nauta, W. T. et al. The structure of expansin, a metabolic product ofPenicillium expansum with antibiotic properties. Rec. Trav. Chim. Pays-Bas64: 254–255. 1945.Google Scholar
  186. 180.
    et al. On the structure of expansine, a bactericidal and fungicidal substance inPenicillium expansum Westl. Rec. Trav. Chim. Pays-Bas65: 865–876. 1946.Google Scholar
  187. 181.
    Nishikawa, H. Biochemistry of molds. II. A metabolic product ofAspergillus melleus Yukawa. Jour. Agr. Chem. Soc. (Japan)9: 772–774. 1933.Google Scholar
  188. 182.
    — Biochemistry of molds. III. A metabolic product ofAspergillus melleus Yukawa. Jour. Agr. Chem. Soc. (Japan)9: 1059–1063. 1933.Google Scholar
  189. 183.
    Oxford, A. E. Antibacterial substances from moulds. Part 3. Some observations on the bacteriostatic powers of the mould products citrinin and penicillic acid. Chem. Ind.61: 48–51. 1942.Google Scholar
  190. 184.
    — andRaistrick, H. Antibacterial substances from moulds. Part 4. Spinulosin and fumigatin, metabolic products ofPenicillium spinulosum Thom andAspergillus fumigatus Fresenius. Chem. Ind.61: 128–129. 1942.Google Scholar
  191. 185.
    — and — Studies in the biochemistry of Microorganisms. 76. Mycelianamide C22H28O5N2. A metabolic product ofPenicillium griseofulvum Dierckx. Part I. Preparation, properties, and breakdown products. Biochem. Jour.42: 323–329. 1948.Google Scholar
  192. 186.
    et al. Studies in the biochemistry of microorganisms. 44. Fulvic acid, a new crystalline yellow pigment, a metabolic product ofP. griseofulvum Dierckx,P. flexuosum Dale andP. brefeldianum Dodge. Biochem. Jour.29: 1102–1115. 1935.Google Scholar
  193. 187.
    et al. Studies in the biochemistry of microorganisms. 60. Griseofulvin, a metabolic product ofPenicillium griseofulvum Dierckx. Biochem. Jour.33: 240–248. 1939.Google Scholar
  194. 188.
    et al. Antibacterial substances from moulds. Part 2. Penicillic acid, a metabolic product ofPenicillium puberulum Bainier, andPenicillium cyclopium Westling. Chem. Ind.61: 22–24. 1942.Google Scholar
  195. 189.
    et al. Antibacterial substances from moulds. Part 6. Puberulic acid, C8H6O6 and puberulonic acid, C8H4O6, metabolic products of a number of species ofPenicillium. Chem. Ind.61: 485–487. 1942.Google Scholar
  196. 190.
    Page, J. E. andRobinson, F. A. Polarographic studies. Part II. Mould metabolites and related quinones. Jour. Chem. Soc. 133–135. 1943.Google Scholar
  197. 191.
    Peck, S. M. andHewitt, W. L. The production of an antibiotic substance similar to penicillin by pathogenic fungi (dermatophytes). Pub. Health Rep. (U.S.A.)60: 148–153. 1945.Google Scholar
  198. 192.
    Penau, H. andHagenmann, G. Essais d'extraction d'une substance bactericide d'origine fongique. Comp. Rend. Soc. Biol. (Paris)137: 724–725. 1943.Google Scholar
  199. 193.
    et al. Attempts to extract a bactericidal substance of fungal origin. Bull. Soc. Chim. Biol. (Paris)25: 406–410. 1943.Google Scholar
  200. 194.
    et al. Properties of a staphylolytic principle elaborated by a mold resemblingPenicillium notatum. Comp. Rend. Soc. Biol. (Paris)137: 592–594. 1943.Google Scholar
  201. 195.
    Perault, R. andGreib, E. Mode of action of corylophillin. Comp. Rend. Soc. Biol. (Paris)138: 797–798. 1944.Google Scholar
  202. 196.
    Philpot, F. J. A penicillin like substance fromAspergillus giganteus Wehm. Nature (London)152: 725. 1943.Google Scholar
  203. 197.
    Plattner, P. A. andClauson-Kaas, N. Über in Welke erzeugendes Stoffwechselprodukt vonFusarium lycopersici Sacc. Helv. Chim. Acta28: 188–195. 1944.Google Scholar
  204. 198.
    — and — Über Lycomarasmin, den Welkstoff aus Fusarium lycopersici Sacc. Experientia1: 195–196. 1945.Google Scholar
  205. 199.
    — andNager, U. Über die Chemie des Enniatins. Experientia3: 325–326. 1947.Google Scholar
  206. 200.
    — and — Welkstoffe und Antibiotika. Über die Konstitution von Enniatin B. Helv. Chim. Acta31: 665–671. 1948.Google Scholar
  207. 201.
    — and — Welkstoffe und Antibiotika. Über die Konstitution von Enniatin A. Helv. Chim. Acta.31: 2192–2203. 1948.PubMedGoogle Scholar
  208. 202.
    — and — Welkstoffe und Antibiotika. Analyse und Charakterisierung der Enniatine. Über das Verhalten von N-Methyl-aminosäuren im Papierchromatogram. Helv. Chim. Acta31: 2203–2209. 1948.PubMedGoogle Scholar
  209. 203.
    et al. Über die Isolierung neuartiger Antibiotika aus Fusarien. Helv. Chim. Acta31: 594–602. 1948.Google Scholar
  210. 204.
    Pollock, A. V. Production of citrinin by five species ofPenicillium. Nature (London)160: 331–332. 1947.Google Scholar
  211. 205.
    Posternak, T. Recherches sur la biochimie des champignons inférieurs. II. Sur la constitution et la synthèse de la phoenicine et sur quelques nouveaux dérivés de la 4,4′-ditoluquinone. Helv. Chim. Acta.21: 1326–1337. 1938.Google Scholar
  212. 206.
    Raistrick, H. andSimonart, P. Studies in the biochemistry of microorganisms. 29. 2:5-Dihydroxybenzoic acid (Gentisic acid) a new product of the metabolism of glucose byPenicillium griseofulvum Dierckx. Biochem. Jour.27: 628–633. 1933.Google Scholar
  213. 207.
    — andSmith, G. Studies in the biochemistry of microorganisms. 42. The metabolic products ofAspergillus terreus Thom; a new mould metabolic product—terrein. Biochem. Jour.29: 606–611. 1935.Google Scholar
  214. 208.
    — and — Studies in the biochemistry of microorganisms. 51. The metabolic products ofAspergillus terreus Thom. Biochem. Jour.30: 1315–1322. 1936.Google Scholar
  215. 209.
    — and — Antibacterial substances from moulds. I. Citrinin, a metabolic product fromPenicillium citrinum Thom. Chem. Ind.60: 828–830. 1941.Google Scholar
  216. 210.
    Paper, K. B. andThom, C. Manual of the Penicillia. 1949.Google Scholar
  217. 211.
    Raphael, R. A. Synthesis of the antibiotic, penicillic acid. Nature (London)160: 261. 1947.Google Scholar
  218. 212.
    Raphael, R.A. Compounds related to penicillic acid. Part II. Synthesis of dihydropenicillic acid. Jour. Chem. Soc. 805–808. 1947.Google Scholar
  219. 213.
    Rennerfelt, E. The effect of some antibiotic substances on the germination of the conidia ofPolyporus annosus Fr. Acta Chem. Scand.3: 1343–1349. 1949.Google Scholar
  220. 214.
    Riley, R. F. andMiller, D. K. The isolation and identification of an antibiotic substance present in the mycelium ofPenicillium crustosum (Thom). Arch. Biochem.18: 13–26. 1948.Google Scholar
  221. 215.
    Rivière, C. et al. Etude de la clitocybine, principe antibiotique extrait duClitocybe candida. Comp. Rend. Acad. Sci. (Paris)225: 1386–1388. 1947.Google Scholar
  222. 216.
    Robbins, W.J. et al. A survey of some wood destroying and other fungi for antibacterial activity. Bull. Torrey Bot. Club72: 165–190. 1945.Google Scholar
  223. 217.
    et al. Production of antibiotic substances by Basidiomycetes. Ann. N. Y. Acad. Sci.48: 67–72. 1946.Google Scholar
  224. 218.
    et al. Antibiotic substances from Basidiomycetes. I.Pleurotus griseus. Proc. Nat. Acad. Sci. (Wash.)33: 171–176. 1947.Google Scholar
  225. 219.
    et al. Antibiotics from Basidiomycetes. II.Polyporus biformis. Proc. Nat. Acad. Sci. (Wash.)33: 176–182. 1947.Google Scholar
  226. 220.
    Robertson, A. et al. The chemistry of fungi. Part VI. Rosenonolactone fromTrichothecium roseum Link. Jour. Chem. Soc. 879–884. 1949.Google Scholar
  227. 221.
    Seigneurin, R. andRoux, A. Substances antibiotiques élaborés par certains champignons supérieurs. Ann. Inst. Pasteur73: 595–598. 1947.Google Scholar
  228. 222.
    Shope, R. E., The therapeutic activity of a substance fromPenicillium funiculosum Thom against swine influenza virus infection of mice. Am. Jour. Bot.35: 803. 1948.Google Scholar
  229. 223.
    Smith, G. The effect of adding trace elements to Czapek-Dox medium. Trans. Brit. Mycol. Soc.32: 280–283. 1950.Google Scholar
  230. 224.
    Stansly, P. G. andAnanenko, N. H. Candidulin: an antibiotic fromAspergillus candidus. Arch. Biochem.,23: 256–261. 1949.PubMedGoogle Scholar
  231. 225.
    Texera, D. A. Production of antibiotic substances by Fusaria. Phytopathology38: 70–81. 1948.Google Scholar
  232. 226.
    Thom. C. The Penicillia. 1930.Google Scholar
  233. 227.
    Thom. C. andRaper, K. B. A manual of the Aspergilli. 1945.Google Scholar
  234. 228.
    Timonin, M. I. Another mould with antibacterial ability. Science96: 494. 1942.PubMedGoogle Scholar
  235. 229.
    Tobie, W. C. andAlverson, C. The rapid recognition of aspergillic acid. Jour. Bact.54: 543–544. 1947.Google Scholar
  236. 230.
    Uroma, E. andVirtanen, O. E. Antibiotics of yeasts. Ann. Med. Exp. et Biol. Fenn.25: 36–47. 1947. Abs. in Biol. Abs.22: 21410. 1948.Google Scholar
  237. 231.
    Vischer, E. B. et al. Viridin. Nature (London)165: 528. 1950.Google Scholar
  238. 232.
    Waksman, S. A. andBugie, E. Strain specificity and production of antibiotic substances. II.Aspergillus flavus-oryzae group. Proc. Nat. Acad. Sci. (Wash.)29: 282. 1943.Google Scholar
  239. 233.
    — and —. Chaetomin, a new antibiotic substance produced byChaetomium cochliodes. I. Formation and properties. Jour. Bact.48: 527–536. 1944.Google Scholar
  240. 234.
    — andHorning, E. S. Distribution of antagonistic fungi in nature and their antibiotic action. Mycologia35: 47–65. 1943.Google Scholar
  241. 235.
    et al. The production of two antibacterial substances fumigacin and clavacin. Science96: 202–203. 1942.PubMedGoogle Scholar
  242. 236.
    et al. Two antagonistic fungi,A fumigatus andA. clavatus, and their antibiotic substances. Jour. Bact.45: 233–248. 1943.Google Scholar
  243. 237.
    Wedekind, E. andFleischer, K. Über die Konstitution des Sparassols. Ber. Deut. Chem. Ges.56: 2556–2563. 1923.Google Scholar
  244. 238.
    Weindling, R. T. lignorum as a parasite of other soil fungi. Phytopathology22: 837–845. 1932.Google Scholar
  245. 239.
    — Studies on a lethal principle effective in the parasitic action ofTrichoderma lignorum onRhizoctonia solani and other soil fungi. Phytopathology24: 1153–1179. 1934.Google Scholar
  246. 240.
    — Isolation of toxic substances from the culture filtrates ofTrichoderma andGliocladium. Phytopathology27: 1175–1177. 1937.Google Scholar
  247. 241.
    — Experimental consideration of the mold toxins ofGliocladium andTrichoderma. Phytopathology31: 991–1003. 1941.Google Scholar
  248. 242.
    — andEmerson, O. H. The isolation of a toxic substance from the culture filtrate ofTrichoderma. Phytopathology26: 1068–1070. 1936.Google Scholar
  249. 243.
    White, E. C. Antibacterial filtrates from cultures ofAspergillus flavipes. Proc. Soc. Exp. Biol., N. Y.54: 258–259. 1943.Google Scholar
  250. 244.
    — andHill, J. H. Studies on antibacterial products formed by molds. I. Aspergillic acid, a product of a strain ofAspergillus flavus. Jour. Bact.45: 433–444. 1945.Google Scholar
  251. 245.
    White, W. L. andDowning, M. H. The identity ofMetarrhizium glutinosum. Mycologia39: 546–555. 1947.Google Scholar
  252. 246.
    et al. History, distribution and economic significance of the cellulose-destroying fungusMemnoniella echinata. Farlowia3: 399–423. 1949.Google Scholar
  253. 247.
    Wiedling, S. The production of antibiotics byPenicillium species. Bot. Not.4: 433–443. 1944.Google Scholar
  254. 248.
    Wiesner, B. P. Bactericidal effects ofAspergillus clavatus. Nature (London)149: 356–357. 1942.Google Scholar
  255. 249.
    Wiken, T. Examination of extracts from sporophores of Swedish Hymenomycetes for antibiotic activity againstPullularia pullulans (de Bary et Loew) Berkhout. Ark. Bot.33A: 1–10. 1946.Google Scholar
  256. 250.
    — andOblom, K. Examination of extracts from sporophores of Swedish Hymenomycetes for antibiotic activity againstStaphylococcus aureus. Ark. Bot.33A: 1–15. 1946.Google Scholar
  257. 251.
    Wilkins, W. H. Investigation into the production of bacteriostatic substances by fungi. Cultural work on Basidiomycetes. Trans. Brit. Mycol. Soc.28: 110–114. 1945.Google Scholar
  258. 252.
    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of more of the larger Basidiomycetes and some of the large Ascomycetes. Ann. Appl. Biol.33: 188–189. 1946.Google Scholar
  259. 253.
    — Investigations into the production of bacteriostatic substances by fungi. Preliminary examination of the fifth 100 species, all Basidiomycetes, mostly of the wood-destroying type. Brit. Jour. Exp. Path.27: 140–142. 1946.Google Scholar
  260. 254.
    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examinations of the sixth 100 species, more Basidiomycetes of the wood-destroying type. Brit. Jour. Exp. Path.28: 53–56. 1947.Google Scholar
  261. 255.
    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the seventh 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.28: 247–252. 1947.Google Scholar
  262. 256.
    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the eighth 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.28: 416–417. 1947.Google Scholar
  263. 257.
    — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the ninth 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.29: 364–366. 1948.Google Scholar
  264. 258.
    — andHarris, G. C. M. Investigation into the production of bacteriostatic substances by fungi. I. Preliminary examination of 100 fungal species. Brit. Jour. Exp. Path.23: 166–169. 1942.Google Scholar
  265. 259.
    — and — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of a second 100 species. Brit. Jour. Exp. Path.24: 141–143. 1943.Google Scholar
  266. 260.
    — and — Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of a fourth 100 species, allPenicillia. Brit. Jour. Exp. Path.25: 135–137. 1944.Google Scholar
  267. 261.
    — and — Investigation into the production of bacteriostatic substances by fungi. V. Preliminary examination of the third 100 fungi with special reference to strain variation among species ofAspergillus. Trans. Brit. Mycol. Soc.27: 113–118. 1945.Google Scholar
  268. 262.
    — and — Investigation into the production of bacteriostatic substances by fungi. VI. Examination of the larger Basidiomycetes. Ann. Appl. Biol.31: 261–270. 1944.Google Scholar
  269. 263.
    Willstaedt, H. Über die Farbstoffe des echten Reizkers (Lactarius deliciosus L.) (Mitteil. I.). Ber. Deut. Chem. Ges.68B: 333–340. 1935.Google Scholar
  270. 264.
    — andZetterberg, B. Lactaroviolin, ein gegen Tuberkel-bacillen in vitro wirksames Antibioticum. Svensk Kemisk Tidskr.58: 306–307. 1947. Abs. in Biol. Abs.21: 2273, 1947.Google Scholar
  271. 265.
    Wintersteiner, O. andDutcher, J. D. Chemistry of antibiotics. Ann. Rev. Biochem.18: 559–594. 1949.Google Scholar
  272. 266.
    Wollenweber, H. W. andReinking, O. A. Die Fusarien. 1935.Google Scholar
  273. 267.
    Woodward, C. R. Production of aspergillic acid by surface cultures ofAspergillus flavus. Jour. Bact.54: 375–380. 1947.Google Scholar
  274. 268.
    Woodward, R. B. andSingh, G. The structure of patulin. Jour. Am. Chem. Soc.71: 758–759. 1949.Google Scholar
  275. 269.
    — and — The synthesis of patulin. Jour. Chem. Soc.72: 1428. 1950.Google Scholar
  276. 270.
    Woolley, D. W. Strepogenin activity of seryl glycyl glutamic acid. Jour. Biol. Chem.166: 783–784. 1946.Google Scholar
  277. 271.
    — Studies on the structure of lycomarasmin. Jour. Biol. Chem.176: 1291–1298. 1948.Google Scholar
  278. 272.
    Yabuta, A. On kojic acid, a new organic acid formed byAspergillus oryzae. Jour. Coll. Agr. (Tokyo)5: 51–58. 1912.Google Scholar
  279. 273.
    — andSumiki, Y. Ochracin, a new metabolic product ofAspergillus ochraceus. Jour. Agr. Chem. Soc. (Japan)9: 1264–1275. 1933.Google Scholar
  280. 274.
    — and — Chemical constitution of ochracin (a fermentation product byAspergillus ochraceus). Jour. Agr. Chem. Soc. (Japan)10: 703–714. 1934.Google Scholar
  281. 275.
    Yasue, Y. Studies on the antibacterial action of fusaric acid, a metabolic product of the causative mould of the “Bakanae” disease of rice plants. Jour. Antibiotics2: 255–264. 1949.Google Scholar
  282. 276.
    Yermolieva, Z. V. et al. Penicillin-crustosin. Zhur. Microbiol., Epidem., i Immunobiol. (Moscow) 79–84. 1944.Google Scholar

Copyright information

© The New York Botanical Garden 1951

Authors and Affiliations

  • P. W. Brian
    • 1
  1. 1.Imperial Chemical Industries LimitedButterwick Research LaboratoriesWelwynEngland

Personalised recommendations