Skip to main content
Log in

Geometry, topology, and physics of non-Abelian lattices

  • Published:
La Rivista del Nuovo Cimento (1978-1999) Aims and scope

Conclusion

After reviewing in some detail the notion of non-Euclidean lattices, whose domain of physical realization lies mostly in the novel carbon structures of the family offullerenes, we have discussed a number of physical problems denned over such lattices. We have shown that the group-theoretical definition of these lattices leads to “designing” new tubular regular structures, endowed with symmetries unheard of in the frame of customary crystallography, which combine features of extreme complexity and, at the same time, of great regularity. We have compared the role of the non-Abelian symmetries which these super-lattices are characterized by, with that of (discrete) harmonic (Fourier) lattice symmetry typical of customary crystallographic lattices. Many novel features enter into play, due to thenon-flatness of the related lattice geometry, which led us to a novel—sometimes unexpected—insight into the dynamical and/or thermodynamical properties of various physical systems which have these lattices as ambient space. We have analyzed how lattice topology bears on the complex combinatorics (related to loop-counting) of the classical Ising model. These lattices, even though finite, are, of course, much closer to being three-dimensional than regular 2D lattices simply equipped with periodic boundary conditions. We have shown, on the other hand, how the relation between the lattice symmetry (for example, in the case of fullerene, the discrete subgroup ofSU(2) that we have denotedg 60 and the symmetry proper to the Hamiltonian of quantum systems of many itinerant interacting electrons (Hubbard-like models) allows us to reduce the calculation of the system spectral properties to a “size” that can be dealt with numerically with present-day numerical exact diagonalization techniques much more easily than a regular 3D cluster with a quite smaller number of sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroto H. W.,Science,242 (1988) 1139.

    Article  ADS  Google Scholar 

  2. Curl R. F. andSmalley R. E.,Science,242 (1988) 1017.

    Article  ADS  Google Scholar 

  3. For a recent review, seeYakobson B. I. andSmalley R. E.,Am. Sci.,85 (1997) 324.

    ADS  Google Scholar 

  4. Rasetti M. andZecchina R.,Physica A,199 (1993) 539.

    Article  ADS  Google Scholar 

  5. Collins P. G., Zetti A., Bando H., Thess A. andSmalley R. E.,Science,278 (1997) 100.

    Article  Google Scholar 

  6. Vanderbilt D. andTersoff J.,Phys. Rev. Lett.,68 (1992) 511.

    Article  ADS  Google Scholar 

  7. Klein F.,Vorlesungen ueber die Theorie des Ikosaeders (Teubner, Leipzig) 1888.

    Google Scholar 

  8. Klein F. andFricke R.,Vorlesungen ueber die Theorie der elliptischen Modulfunctionen (Teubner, Leipzig) 1890.

    MATH  Google Scholar 

  9. Magnus W.,Non-Euclidean Tesselations and their Groups (Academic Press, New York) 1974.

    Google Scholar 

  10. Coxeter H. S. M. andMoser W. O.,Generators and Relations for Discrete Groups (Springer-Verlag, Berlin) 1965.

    MATH  Google Scholar 

  11. Magnus W., Karrass A. andSolitar D.,Combinatorial Group Theory (Wiley J., New York) 1966.

    MATH  Google Scholar 

  12. Birman J. andHilden H.,On Mapping Class Groups of Closed Surfaces as Covering Spaces, inAdvances in the Theory of Riemann Surfaces, Ann. Math. Studies,66 (1971).

  13. Thurston W. P.,Three-Dimensional Geometry and Topology (Princeton University Press, Princeton) 1997.

    MATH  Google Scholar 

  14. Zieschang H.,Finite Groups of Mapping Classes, Lect. Notes Math.,875 (Springer Verlag, Berlin) 1981.

    Google Scholar 

  15. Rasetti M.,The Mapping Class Group in Statistical Mechanics, inSymmetries in Science, edited byGruber B. andIachello F. (Plenum Press, New York) 1989.

    Google Scholar 

  16. Lickorish W. B. R.,Proc. Camb. Philos. Soc.,60 (1964) 769.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dehn M.,Acta Math.,69 (1938) 135.

    Article  MathSciNet  Google Scholar 

  18. Humphries S.,Generators for the Mapping Class Group, inTopology in Low-dimensional Manifolds, edited byFenn R.,Lect. Notes Math.,722 (Springer Verlag, Berlin) 1979.

    Google Scholar 

  19. Rourke C. P. andSanderson B. J.,Ann. Math.,87 (1968) 1,256,431.

    Google Scholar 

  20. Wajnryb B.,Isr. J. Math.,45 (1983) 157.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hatcher A. andThurston W.,Topology,19 (1980) 221.

    Article  MathSciNet  MATH  Google Scholar 

  22. Harer J.,Invent. Math.,72 (1983) 221.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Birman J.,Braids, Links and Mapping Class Group, Ann. Math. Studies,82 (1975).

  24. Rasetti M.,Ising Model on Finitely Presented Groups, inGroup Theoretical Methods in Physics, edited bySerdaroglu M. and’Inönü E.,Lect. Notes Phys.,180 (Springer Verlag, Berlin) 1983.

    Chapter  Google Scholar 

  25. Regge T. andZecchina R.,J. Math. Phys.,37 (1996) 2796.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Onsager L.,Phys. Rev.,65 (1944) 117.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Kasteleyn P. W.,J. Math. Phys.,4 (1963) 287.

    Article  MathSciNet  ADS  Google Scholar 

  28. Fisher M. E.,J. Math. Phys.,7 (1966) 1776.

    Article  ADS  Google Scholar 

  29. MacCoy B. andWu T.,The Two-Dimensional Ising Model (Harvard University Press, Cambridge) 1976.

    Google Scholar 

  30. Coxeter H. S. M. andMoser W. O.,Generator and Relations for Discrete Groups (Springer, Berlin) 1965.

    Google Scholar 

  31. Magnus W.,Non-Euclidean Tesselations and their Groups (Academic Press, New York) 1974.

    Google Scholar 

  32. Magnus W., Karras A. andSolitar D.,Combinatorial Group Theory (Wiley, New York) 1966.

    MATH  Google Scholar 

  33. Conway J. H., Curtis R. T., Norton S. P., Parker R. A. andWilson R. A.,Atlas of Finite Groups (Oxford University Press, New York) 1985.

    MATH  Google Scholar 

  34. Rasetti M. andRegge T.,Riv. Nuovo Cimento,4 (1981) 1.

    Article  MathSciNet  Google Scholar 

  35. Lund F., Rasetti M. andRegge T.,Commun. Math. Phys.,51 (1976) 15;Theor. Mat. Fiz.,11 (1977) 246.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Spivak M.,Calculus on manifolds (Benjamin) 1968.

  37. Gauss C. F.,Disquisitiones Arithmeticae (Springer-Verlag, New York) 1986.

    MATH  Google Scholar 

  38. Tolimieri R.,Adv. Appl. Math.,5 (1984) 56;7 (1986) 344.

    Article  MathSciNet  MATH  Google Scholar 

  39. Auslander L., Feig E. andWinograd S.,Adv. Appl. Math.,5 (1984) 31.

    Article  MathSciNet  MATH  Google Scholar 

  40. Vulis M.,Adv. Appl. Math.,6 (1985) 350.

    Article  MathSciNet  MATH  Google Scholar 

  41. Weil A.,Basic Number Theory (Springer-Verlag, Berlin) 1967.

    Book  MATH  Google Scholar 

  42. Cooley J. andTukey J.,Math. Comput.,19 (297) 1967.Cooley J., Lewis P. A. andWelch P. P.,Proc. IEEE,55 (1967) 1675.

    Article  MathSciNet  Google Scholar 

  43. Hardy G. H. andWright E. M.,An Introduction to the Theory of Numbers (Oxford University Press, Oxford) 1979.

    MATH  Google Scholar 

  44. Michel L., private communication.

  45. Sternberg S.,Group Theory and Physics (Cambridge University Press, Cambridge) 1994.

    MATH  Google Scholar 

  46. Fulton W. andHarris J.,Representation Theory (Springer-Verlag, Berlin) 1991.

    MATH  Google Scholar 

  47. Hubbard J.,Proc R. Soc. London, Ser. A,276 (1963) 238;277 (1964) 237;Gutzwiller M. C.,Phys. Rev. Lett.,10 (1963) 159.

    Article  ADS  Google Scholar 

  48. The Hubbard Model: A Reprint Volume, edited byMontorsi A. (World Scientific Publ. Co., Singapore) 1992.

    Google Scholar 

  49. Yang C. N. andZhang S. C.,Mod. Phys. Lett. B,4 (1990) 759.

    Article  ADS  Google Scholar 

  50. Heilmann O. J. andLieb E. H.,Ann. N. Y. Acad. Sci.,172 (1971) 583.

    Article  ADS  Google Scholar 

  51. Yang C. N.,Phys. Rev. Lett.,63 (1989) 2144.

    Article  ADS  Google Scholar 

  52. Essler F. H. L., Korepin V. E. andSchoutens K.,Phys. Rev. Lett.,67 (1991) 3848;Nucl. Phys. B,384 (1992) 431.

    Article  ADS  Google Scholar 

  53. Lieb E. H. andWu F. Y.,Phys. Rev. Lett.,20 (1968) 1445.

    Article  ADS  Google Scholar 

  54. Essler F. H. L., Korepin V. E. andShoutens K.,Phys. Rev. Lett.,68 (1992) 2960.

    Article  MathSciNet  ADS  Google Scholar 

  55. Montorsi A., Rasetti M. andSolomon A. I.,Int. J. Mod. Phys. B,3 (1989) 247.

    Article  MathSciNet  ADS  Google Scholar 

  56. Cesare S. andDel Duca V.,Riv. Nuovo Cimento,10 (1987) 1.

    Article  Google Scholar 

  57. Rasetti M. andZecchina R., in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceresole, A., Rasetti, M. & Zecchina, R. Geometry, topology, and physics of non-Abelian lattices. Riv. Nuovo Cim. 21, 1–56 (1998). https://doi.org/10.1007/BF02877392

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877392

Navigation