Skip to main content
Log in

Resistance ofPseudomonas aeruginosa to β-lactam antibiotics

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A series of experiments were performed withP. aeruginosa to demonstrate which of the biochemical mechanisms are responsible for the resistance to the β-lactam antibiotics. The constitutive β-lactamase was isolated and characterized for the strain used as type OXA whose pI was 7.1, with a molar mass of 49 kg/mol. The strain was also submitted to a series of treatments with Tris and Tris -EDTA to disrupt the outer membrane. The treated cells demonstrated a ten-fold reduction in the MIC with cloxacillin, six-fold with penicillin, and five-fold with oxacillin. At least two different biochemical mechanisms were responsible for the resistance to the β-lactams studied which could be important in the prevalence ofP. aeruginosa in nosocomial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angus B.L., Caron A.M., Kropinski D.A., Hancock R.E.W.: Outer membrane permeability inPseudomonas aeruginosa: comparison of a wild-type with an antibiotics supersusceptible mutant.Antimicrob. Agents Chemother.21, 299–309 (1982).

    PubMed  CAS  Google Scholar 

  • Brzezinska M., Benveniste R.: Gentamicin resistance in strain ofPseudomonas aeruginosa mediated by enzymatic N-acetylation of the deoxystreptamine moiety.Biochemistry10, 1787–1795 (1972).

    Google Scholar 

  • Colowick S.P., Kaplan N.D.:Enzyme Purification and Related Techniques, Vol. XXII. Academic Press, New York -London 1971.

    Google Scholar 

  • Dale J.W., Smith J.T.: R-faetor mediated beta-lactamases that hydrolyse oxacillin; evidence for two distinct groups.J. Bacteriol.119, 351–356 (1969).

    Google Scholar 

  • Fyfe J.A.M., Harris G., Govan J.R.M.: Revised pyocin typing method forPseudomonas aeruginosa.J.Clin. Microbiol.20, 47–50 (1984).

    PubMed  CAS  Google Scholar 

  • Hancock R.E.W., Decad G.M., Nikaido H.: Identification of the protein producing transmembrane diffusion pores in the outer membrane ofPseudomonas aeruginosa PAO1.Biochim. Biophys. Acta554, 324–331 (1979).

    Google Scholar 

  • Irvin R.T., Costerton J.W.: Tris(hydroxymethyl)amino-methane buffer modification ofEscherichia coli outer membrane permeability.J. Bacteriol.145, 1397–1403 (1981).

    PubMed  CAS  Google Scholar 

  • Jacoby G.A., Mathew M.: The distribution of beta-lactamase genes on plasmid found inPseudomonas aeruginosa.Plasmid2, 41–47 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Janda J.M., Bottone E. J.:Pseudomonas aeruginosa enzyme prolifing; Predictor of potential invasiveness and use as an epidemiological tool.J. Clin. Microbiol.14, 55–60 (1981).

    PubMed  CAS  Google Scholar 

  • Luria S., Burrous J.W.: Hybridization betweenEscherichia coli andShigella.J. Bacteriol.74, 461–476 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Nicas T.I., Hancock R.E.W.: Outer membrane protein H1 ofPseudomonas aeruginosa involvement in adaptative and mutational resistance to ethylenediaminetetraacetate, polymyxin B and gentamicin.J. Bacteriol.143, 872–878 (1980).

    PubMed  CAS  Google Scholar 

  • Nicas T.I., Hancock R.E.W.:Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein-F deficient mutant.J. Bacteriol.153, 281–285 (1983).

    PubMed  CAS  Google Scholar 

  • Petras G.V., Bognar S.Z.: Origin and spread ofPseudomonas aeruginosa, Proteus andKlebsiella during twenty years in an infectious hospital.Acta Microbiol. Acad. Sci. Hung.28, 367–380 (1982).

    Google Scholar 

  • Phehein L.C., Penn R.G., Sanders C.C., Georing R.V., Giegr D.H.: Emergence of resistance to beta-lactam and aminoglycoside antibiotics during moxalactam therapy ofPseudomonas aeruginosa infections.Antimicrob. Agents Chemother.22, 1037–1041 (1982).

    Google Scholar 

  • Richmond M.H., Sykes R.B.: The β-lactamases of gram negative bacteria and their possible physiological role, pp. 31–88 inAdvances in Microbial Physiology (A.H. Rose, D.W. Tempest, eds), Vol. 9. Academic Press, London-New York 1973.

    Google Scholar 

  • Sawai T., Takahashi I., Yamagishi S.: Iodometric assay method for beta-lactamase with various beta-lactam antibiotics as substrates.Antimicrob. Agents Ohemother.13, 1037–1041 (1978).

    Google Scholar 

  • Scudamore R.A., Goldner M.: Limited contribution of the outer membrane penetration barrier toward intrinsic antibiotic resistance inPseudomonas aeruginosa.Can. J. Microbiol.28, 168–175 (1982).

    Article  Google Scholar 

  • Yamagushi A., Hiruma R., Sawai T.: Phospholipid bilayer permeability of beta-lactam antibiotics.J. Antibiotics35, 1692–1699 (1982).

    Google Scholar 

  • Zimmermann W., Rosselet A.: Function of the outer membrane ofEscherichia coli as a permeability barrier to beta-lactam antibiotics.Antimicrob. Agents Chemother.12, 368–372; (1977).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto, U.L., Amadou, S.M., Ramos, F.J. et al. Resistance ofPseudomonas aeruginosa to β-lactam antibiotics. Folia Microbiol 32, 290–296 (1987). https://doi.org/10.1007/BF02877216

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877216

Keywords

Navigation