Skip to main content
Log in

Some properties of an endo-l,4-β-D-xylanase from the ligniperdous fungusTrametes hirsuta

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Some properties of purified endo-l,4-β-D-xylanase (1,4-β-D-xylan xylanohydrolase, EC 3.2.1.8) from the ligniperdous fungusTrametes hirsuta were investigated. The enzyme was stable between pH 4.0 and 8.0 with optimum activity at pH 5.0–5.5. The temperature optimum was 50 °C and the enzyme was stable for up to 30 min at 45 °C; however, it was denatured at higher temperatures. TheK m for 4-O-methylgluourono-D-xylan was 6.36. 10−3 equivalents ofD-xylose per litre, the activation energy was 28 kJ mol−1. The molecular weight determined by means of gel chromatography was 22000–24000. The enzyme was activated by Ca2+ and inhibited by Ag+ and Hg2+. On the basis of the effect of 2-hy-droxy-5 nitrobenzyl bromide, N-bromosuccimmide and N-aeetyhmidazole it may be assumed that trytophan and possibly tyrosine residues influence the enzyme catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrevs P.: Estimation of the molecular weight of proteins by Sephadex gel-chromatography.Biochem. J. 91, 222 (1964).

    Google Scholar 

  • Andrews P.: The gel filtration behaviour of proteins related to their molecular weights over a wide range.Biochem. J. 96, 595 (1965).

    PubMed  CAS  Google Scholar 

  • Boyer P. D.: Spectrophotometric study of the reaction of protein sulfhydryl groups with organic mercurials.J. Am. Chem. Soc. 76, 4331 (1954).

    Article  CAS  Google Scholar 

  • Buchler C. A., Kirchner F. K., Debel G. F.: 2-Hydroxy-5-nitrobenzyl-chlonde.Org. Synt. 20, 59 (1940).

    Google Scholar 

  • Cohen J. A., Oosterbaan R. A., Berends F.: Organophosphorus compounds.Methods in Enzymology 11, 686 (1967).

    CAS  Google Scholar 

  • Eriksson K. E., Pettersson B.: Purification and oharacterization of xylanase from the rot fungusStereum sanguinolentum.Int. Biodetn. Bull. 7, 115 (1971).

    CAS  Google Scholar 

  • Gascoigne J. A., Gascoigne M. M.: The xylanase ofFusarium roseum.J. Gen. Microbiol. 22, 242 (1960).

    PubMed  CAS  Google Scholar 

  • Gundlach G. H., Stein W. H., Moore S.: The nature of the amino residues involved in the inactivation of ribonuclease by iodoacetate.J. Biol. Chem. 234, 1757 (1959).

    Google Scholar 

  • Hashimoto S., Muramatsu T., Funatsu M.: Studies on xylanase fromTrichoderma viride. I. Isolation and properties of crystalline xylanase.Agr. Biol. Chem. 35, 501 (1971).

    CAS  Google Scholar 

  • Horton H. R., Koshland D. E.: A highly colored reagent with selectivity for the tryptophan residue in proteins.J. Am. Chem. Soc. 87, 1126 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G., Neukom H.: Isolation of a xylanase from commercial cellulase preparation.Biochim. Biophys. Acta 128, 402 (1966)

    PubMed  CAS  Google Scholar 

  • Karácsonyi Š., Kubačková M., Hrivňák J.: The polysacchandes from white willow (Salix alba L.). The constitution of 4-O-methylglucurono-xylan.Collection Czech. Chem. Commun. 32, 3597 (1967).

    Google Scholar 

  • King N. J., Fuller D. B.: The xylanase system ofConiophora cerebella.Biochem. J. 108, 571 (1968).

    PubMed  CAS  Google Scholar 

  • Kubačková M., Karácsonyi Š., Váradi J.: Studies on xylanase from Basidiomycetes. Selection of strains for the production of xylanase.Folia Microbiol. 20, 29 (1975).

    Article  Google Scholar 

  • Kubačková M., Karácsonyi Š., Toman R.: Purification of xylanase from wood-splitting fungusTrametes hirsuta (Wulf.) Pilát.Folia Microbiol. 21, 28 (1976).

    Google Scholar 

  • Manners D. J., Wilson G.: Purification and properties of an endo-(l-3)-β-D-glucanase from malted barley.Carbohyd. Res. 37, 9 (1974).

    Article  CAS  Google Scholar 

  • Riordan J. F., Vallee B. L.: Reactions with N-ethylmaleimide and p-chloromercuribenzoate.Methods in Enzymol. 11, 545 (1967).

    Google Scholar 

  • Riordan J. F., Wacker W. E. C., Vallee B. L.: N-Acetyhmidazole: A reagent for determination of “free” tyrosyl residues of proteinsBiochemistry 4, 1758 (1965).

    Article  CAS  Google Scholar 

  • Somogyi M.: Notes in sugar determination.J. Biol. Chem. 195, 19 (1952).

    CAS  Google Scholar 

  • Sørensen H.: On the specificity and products of action of xylanase fromChaetomium globosum Kunze.Physiol. Plant. 5, 183 (1952).

    Article  Google Scholar 

  • Spande T. F., Witkop B.: Determination of the tryptophan content of proteins with N-bromosuocinimide.Methods Enzymol. 11, 498 (1967).

    CAS  Google Scholar 

  • Váradi J., Nečesaný V., Kovács P.: Cellulase and xylanase of fungus Schizophyllum communo. III. Purification and properties of xylanase. (In Slovak)Drevársky výskum 3, 147 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubačková, M., Karácsonyi, S., Bilisics, L. et al. Some properties of an endo-l,4-β-D-xylanase from the ligniperdous fungusTrametes hirsuta . Folia Microbiol 23, 202–209 (1978). https://doi.org/10.1007/BF02876580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02876580

Keywords

Navigation