Skip to main content
Log in

The Au−Pd (Gold-Palladium) system

  • Provisional
  • Au−Pd
  • Published:
Journal of Phase Equilibria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Cited References

  • 06Rue: R. Ruer, Z. Anorg. Allg. Chem., 51, p 391–396 (1906). (In Fig. 1, the data points of [06Rue] have been modified, using linear interpolation between the melting points of Au (1064 °C) and Pd (1541 °C) as determined by [06Rue] and the values given in Bull. Alloy Phase Diagrams, 2(1), p 145 (1981) of 1064.43 °C (Au) and 1555 °C (Pd).)

    Article  Google Scholar 

  • 11Gei: W. Geibel, Z. Anorg. Allg. Chem., 69, p 43–46 (1911).

    Google Scholar 

  • 11Sch: F.A. Schulze, Phys. Z., 12, p 1028–1031 (1911).

    Google Scholar 

  • 17Bor: G. Borelius, Ann. Phys. (Leipzig), 53, p 615–628 (1917).

    Google Scholar 

  • 24Hol: S. Holgersson and E. Sedström, Ann. Phys. (Leipzig), 75, p 149–150 (1924).

    Google Scholar 

  • 24Sed: E. Sedström, dissertation, Stockholm (1924).

  • 25Joh: C.H. Johansson, Ann. Phys. (Leipzig), 76, p 452–453 (1925).

    Google Scholar 

  • 27Fra: W. Fraenkel and A. Stern, Z. Anorg. Allg. Chem., 166, p 169 (1927).

    Article  Google Scholar 

  • 28Car: F.E. Carter, Trans. AIME, 78, p 759–785 (especially p 775–776) (1928).

    Google Scholar 

Additional references

  • 31Ste: W. Stenzel and J. Weerts, Festschrift zum 50-jährigen Bestehen der Platinschmelze, G. Siebert GmbH, Hanau, p 288–299, (1931); Z. Metallkunde, 24, p 139–140 (1932).

    Google Scholar 

  • 32Wis: E. M. Wise, W. G. Crowell, and J. T. Eash, Trans. AIME, 99, p 363 (1932).

    Google Scholar 

  • 33Röh: H. Röhl, Ann. Phys. (Leipzig), 18, p 155–168 (1933).

    Article  Google Scholar 

  • 41Car: F. E. Carter, private communication cited in [41Vin]..

    Google Scholar 

  • 41Siv: C. S. Sivil, private communication cited in [41Vin]..

    Google Scholar 

  • 41Vin: R. F. Vines. The Platinum Metals and Their Alloys, The International Nickel Company, Inc., New York, p 110–112 (1941).

    Google Scholar 

  • 41Wis: E. M. Wise, unpublished research, cited by [41Vin].

  • 46Kuz: V. G. Kuznetsov, Izv. Sekt. Platiny. Akad. Nauk SSSR, 20, p 5–20 (1946); Struct. Rep., 10, p 54 (1945–1946).

    Google Scholar 

  • 50Geg: Ya. E. Geguzin and B. Ya. Pines, Dokl. Akad. Nauk SSSR, 75, p 387–390, 535–538 (1950); Met. Abstr., 19, p 646 (1952).

    Google Scholar 

  • 64Cop: W. D. Copeland and M. E. Nicholson, Acta Met., 12, p 321–322 (1964).

    Article  Google Scholar 

  • 64Ive: V. I. Iveronova and A. A. Katsnelson, Kristallografiya, 9, p 557–558 (1964); Sov. Phys.—Crystallogr., 9, p 467–468 (1965).

    Google Scholar 

  • 64Mae: A. Maeland and T. B. Flanagan, Can. J. Phys., 42, p 2364–2366 (1964).

    Article  ADS  Google Scholar 

  • 64Nag: A. Nagasawa, Annual Meeting of Physical Society of Japan (1964), cited in [65Nag].

    Article  ADS  Google Scholar 

  • 65Nag: A. Nagasawa, Y. Matsuo, and J. Kakinoki, J. Phys. Soc. Jpn., 20, p 1881–1885 (1965).

    Article  ADS  Google Scholar 

  • 66Ive: V. I. Iveronova and A. A. Katsnelson, Kristallografiya, 11, p 576–580 (1966); Sov. Phys.—Crystallogr. 11, p 504–507 (1967).

    Google Scholar 

  • 66Mat: Y. Matsuo, A. Nagasawa, and J. Kakinoki, J. Phys. Soc. Jpn., 21, p 2633–2637 (1966).

    Article  ADS  Google Scholar 

  • 51Sch: N. G. Schmahl, Facilitation of the, Reduction of Metal Compounds by Formation of Alloys and its Calculation, Z. Anorg. Allgem. Chem., 266, p 1–29 (1951) in German. (Activities were determined between 32 and 48 at.% Pd in Au−Pd alloys at 956 K)

    Article  Google Scholar 

  • 56Rud: A. A. Rudnitskii, Termoelektricheskie Svoistva Blagorodnykh Metallov i ikh Splavov, Izadtel. Akad. Nauk SSSR, 148 p (1956) in Russian; translated as Thermoelectric Properties of the Noble Metals and Their Alloys, Atomic Energy Commission, AEC-tr-3724, 234 p (1959). (Thomson emf values measured as a function of temperature and composition show some break in electrical behavior near 50 at.% Pd)

  • 64Nag: A. Nagasawa, Superlattice Structure of Evaporated AuPd Films, J. Phys. Soc. Jpn., 19, p 2344–2345 (1964). (The AuCuI-type structure was found in evaporated single crystal films with an order-disorder transformation between 650 and 700°C)

    Article  ADS  Google Scholar 

  • 64Spe: P. L. Spedding, Letter to the Editor, J. Less-Common Met., 7, p 395–396 (1964). (Thermal coefficients of, expansion of 80wt.% Au−20 wt.% Pd are reported. See table below)

    Article  Google Scholar 

  • 65Dev: U. Devi, C. N. Rao and K. K. Rao, Effect of Temperature on the Lattice Parameter of a 58.98 at.% Gold,−41.02 at.% Palladium Alloy, Acta Met., 13, p 44–45 (1965). (No deviations from linearity, within experimental error, were observed in the plot of lattice parameter versus temperature over the range 100 to 600°C)

    Article  Google Scholar 

  • 65Nag: A. Nagasawa, Superlattice Structure of Evaporated Cu−Au−Pd Films, J. Phys. Soc. Jpn., 20, p 1520 (1965). (The superlattice structure results [66Mat] in the binary Au−Pd system are strongly supported by results from this ternary alloy study)

    Article  ADS  Google Scholar 

  • 66Dar: J. B. Darby, Jr., The Relative Heats of Formation on Solid Gold-Palladium Alloys, Acta Met., 14, p 265–270 (1966). (Exothermic heats found over the entire composition range, with a maximum at Au−40 at.% Pd)

    Article  Google Scholar 

  • 69Ive: V. I. Iveronova, A. A. Katsnel'son, I. I. Popova, and S. V. Sveshnikov, Temperature Dependence of Short-Range Order in Palladium-Rich Gold-Palladium Alloys, Ukrain. Fiz. Zhur., 14 (10), p 1647–1649 (1969) in Russian. (Considerable shortrange order was observed with Au−Pd alloys of 63.5 and 77 at.% Pd at 20, 400 and 700°C)

    Google Scholar 

  • 70Lin: W. Lin and J. E. Spruiell, and R. O. Williams, Short-Range Order in a Gold−40.0 Atomic Per Cent Palladium Alloy, J. Appl. Cryst., 3, p 297–305 (1970). (Interpretation of the X-ray diffuse scattering results with computer simulation of the short-range structure indicated a tendency toward the formation of a tetragonal AB long-period superlattice)

    Article  Google Scholar 

  • 71Bar: D. C. Bartosik, Thermodynamic Properties of the Gold-Palladium System as Measured with a Dual-Chamber Knudsen Cell Mass Spectrometer Combination Technique, Ph. D. Thesis, Northwestern Univ., Evanston, IL, 137 p (1971); Diss. Abst. Int. B, 32 (6), p 3478 (1971). (The activity and partial heats of mixing in the solid state at 1473 K were determined. Integral excess entropy and enthalpy were both negative for alloys up to 80 at.% Au)

    Google Scholar 

  • 71Kaw: Y. Kawasaki, S. Ino, and S. Ogawa, Electron Diffraction Study on the Superlattice Formation in the Gold-Palladium Alloy System, J. Phys. Soc. Jpn., 30 p 1758–1759 (1971). (Superlattice reflections were not observed for Au3Pd, nor any diffuse scattering for Au−40 at.% Pd, in thin films, contrary to other investigations [64Cop, 65Nag]. AuPd3 superlattice formation is confirmed, in agreement with [66Mat], but with a somewhat different existence range and order-disorder transformation temperature) See Fig. 2

    Article  ADS  Google Scholar 

  • 22Haa: H. Haas and K. Lücke, On the Short-Range Order Formation In Gold-Palladium-Alloys, Scripta Met., 6, p 715–720 (1972). (Increases in electrical resistivity on quenching Au−Pd (10 at.%) alloys annealed between 50 and 270°C are interpreted as due to short-range order formation)

    Article  Google Scholar 

  • 73All: E. G. Allison and G. C. Bond, The Structure and Catalytic Properties of Palladium-Silver and Palladium-Gold Alloys, Catal. Rev., 7 (2), p 233–289 (1972). (An extensive review that covers the thermodynamic properties, lattice parameters, and ordering of the Au−Pd system)

    Article  Google Scholar 

  • 77Jab: A. Jablonski, S. H. Overbury and G. A. Somorjai, The Surface Composition of the Gold-Palladium Binary Alloy System, Surface Science, 65, p 578–592 (1977). (The surfaces of annealed samples were found, by Auger electron spectroscopy (AES) to be significantly enriched in Au with respect to the bulk)

    Article  ADS  Google Scholar 

  • 77Mia: J.-M. Miane, M. Gaune-Escard, and J. P. Bros, Liquidus and Solidus Surfaces of the Ag−Au−Pd Equilibrium Phase Diagram, High Temp.-High Press., 9, p 465–469 (1977). (Includes brief discussion of the individual binary systems)

    Google Scholar 

  • 81Bur: G. N. Burland and P. J. Dobson, Pseudomorphic Behavior and Interdiffusion Between Palladium Films and Silver and Gold, Thin Solid Films, 75 p 383–390 (1981). (Reflection highenergy electron diffraction (RHEED) and Auger Electron spectroscopy (AES) techniques used to determine film structure and coverage. A change in the interatomic spacing from the expected bulk value to match the substrate lattice spacing occurs in thin Pd films deposited onto the (111) plane of gold at room temperature)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done at IIT Research Institute, Chicago, Illinois, under contract to the Office of Standard Reference Data, National Bureau of Standards. From Elliott; [IITRI]; literature searched through 1966.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, R.P., Shunk, F.A. The Au−Pd (Gold-Palladium) system. Bulletin of Alloy Phase Diagrams 2, 482–484 (1982). https://doi.org/10.1007/BF02876170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02876170

Keywords

Navigation