Skip to main content
Log in

Degradation and turnover of bacterial cell wall mucopeptides in growing bacteria

Деградация и “turnover” мукопептидов в клеточной оБолочке растущих Бактерий

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The mucopeptide layer of the cell wall ofBacillus megaterium is broken down into separate components during growth of the cells. The released diaminopimelic acid is partly decarboxylated to lysine, which is incorporated in the proteins and partly used for cell wall resynthesis. The smaller portion of the degraded mucopeptide is released into the medium in the form of non-utilized fragments. The rate of the mucopeptide turnover is a function of the rate of growth of the culture. About 15–20% of the rigid layer of the cell wall is degraded during on cell division. The sensitivity ofBacillus megaterium to lysozyme and the rate of its conversion to protoplasts is also proportionate to the rate of growth of the culture. There is no measurable mucopeptide turnover in non-growing cells, either in the stationary phase of the culture or in starvation in nitrogen-free medium. The resistance of the cell wall to lysozyme also increases during the stationary phase. The rigid component of the cell wall is probably also broken down during growth ofBacillus cereus andEscherichia coli cultures.

Abstract

Слой мукопептидов в клеточной оболочке Bacillus megaterium в течение роста клеток расщепляется на отдельные составные части. Освобождающаяся диаминопимеловая кислота частично декарбоксируется на лизин, который включается в белки. Меньшая часть расщепленного мукопептида выделяется в среду в форме неиспользованных осколков. Скорость «turnover» мукопептидов зависит от скорости роста культуры. В течение одного клеточного деления деградируется около 15–20% плотного слоя клеточной оболочки. Чувствительность Bacillus megaterium к лизоциму и скорость его превращения в протопласты также пропорциональна скорости роста культуры. В нерастущих клетках—как в стационарной фазе культуры, так в при ее голодании в безазотной среде—«turnover” мукопептидов не осуществляется. В то же время в стационарной фазе повышается устойчивость клеточных оболочек к лизоциму. Расщепление плотного компонента клеточной оболочки имеет место и в ходе размножения культур Bacillus cereus и Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chaloupka, J., Křečková, P., Říhová, L.:Changes in the character of the cell wall in growth of Bacillus megaterium cultures. Fol. microbiol. 7: 269, 1962a.

    CAS  Google Scholar 

  • Chaloupka, J., Křečková, P., Říhová, L.:The mucopeptide turnover in the cell walls of growing cultures of Bacillus megaterium KM. Experientia 18: 362, 1962b.

    Article  PubMed  CAS  Google Scholar 

  • Cole, R. M., Hahn, J. J.:Cell wall replication in Streptococcus pyogenes. Science 135: 722, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Mandelstam, J.:The free amino acids in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 103, 1958a.

    PubMed  CAS  Google Scholar 

  • Mandelstam, J.:Turnovers of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 110, 1958b.

    PubMed  CAS  Google Scholar 

  • McQuillen, K.:Bacterial protoplast. Growth and division of protoplasts of Bacillus megaterium. Biochim. biophys. Acta 18: 458, 1955.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., Moyle, J.:Autolytic release and osmotic properties of “protoplasts” from Staphylococcus aureus. J. gen Microbiol. 16: 184, 1957.

    PubMed  CAS  Google Scholar 

  • Nomura, M.:Studies on the autolytic phenomenon of Bacillus subtilis. I. The anaerobic lysis of Bacillus subtilis. J. Agr. Chem. Soc. Japan 29: 674, 1955.

    CAS  Google Scholar 

  • Park, J. T.:Uridine-5-pyrophosphate derivates. I. Isolation from Staphylococcus aureus. J. biol. Chem. 194: 877, 1952.

    PubMed  CAS  Google Scholar 

  • Park, J. T., Hancock, R.:A fractionations procedure for the studies of the synthesis of cell wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J. gen. Microbiol. 22: 249, 1960.

    PubMed  CAS  Google Scholar 

  • Rickenberg, H. V.:The effect of metal ions and proteins on the stability of the β-galactosidase of Escherichia coli. Biochim. Biophys. Acta 35: 122, 1959.

    Article  CAS  Google Scholar 

  • Salton, M. R. J.:Studies of the bacterial cell wall. IV. The composition of the cell walls of some Grampositive and Gram-negative bacteria. Biochim. biophys. Acta 10: 512, 1953.

    Article  PubMed  CAS  Google Scholar 

  • Strange, R. E., Dark, F. A.:Cell wall lytic enzymes at sporulation and spore germination in Bacillus species. J. gen Microbiol. 17: 525, 1957.

    PubMed  CAS  Google Scholar 

  • Strampp, A., Conover, M. J., Shockman, G. D.:A cell wall autolytic system of Streptococcus faecalis. Bact. Proc. G 12: 26, 1963.

    Google Scholar 

  • Strominger, J. L.:Microbial uridine-5′-pyrophosphate N-acetylamino sugar compounds. I. Biology of the penicillin-induced accumulation. J. Biol. Chem. 224: 509, 1957.

    PubMed  CAS  Google Scholar 

  • Urbá, R. C.:Protein breakdown in Bacillus cereus. Biochem. J. 71: 513, 1959.

    PubMed  Google Scholar 

  • Van Tubergen, R. P., Setlow, R. B.:Quantitative radioautographic studies on exponentially growing cultures of Escherichia coli. The distribution of parental DNA, RNA, protein and cell wall among progeny cells. Biophys. J. 1: 589, 1961.

    Article  Google Scholar 

  • Vinter, V.:Spores of microorganisms. XII. Nonparticipation of the preexisting sporangial cell wall in the formation of spore envelopes and the gradual synthesis of DAP-containing structures during sporogenesis. Fol. microbiol. 8:147, 1963.

    CAS  Google Scholar 

  • Weidel, W., Frank, H., Leutgeb, W.:Autolytic enzymes as a source of error in the preparation and study of Gram-negative cell walls. J. gen. Microbiol. 30: 127, 1963.

    PubMed  CAS  Google Scholar 

  • Weidel, W., Frank, H., Martin, H. H.:The rigid layer of the cell wall of Escherichia coli strain B. J. gen Microbiol. 22: 158, 1960.

    PubMed  CAS  Google Scholar 

  • Work, E.:Biochemistry of the bacterial cell wall. nature 179: 841, 1957.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaloupka, J., Říhová, L. & Křečková, P. Degradation and turnover of bacterial cell wall mucopeptides in growing bacteria. Folia Microbiol 9, 9–15 (1964). https://doi.org/10.1007/BF02875894

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875894

Keywords

Navigation