Skip to main content
Log in

Effect of collector temperature and conductivity on the chain conformation of nylon 6 electrospun nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrospinning is a versatile process used to prepare micro- and nano- sized fibers from various polymer solution. Here, we dealt with the variation in the morphology of nylon 6 electrospun nanofibers and their polymorphism depending on the type and physical state of the collectors. SEM study showed that the fiber diameter was increased from 80 to 103 nm while it was collected in water bath. Similarly the fiber diameter and bonding was increased 103 to 115 nm with the temperature whereas it was linearly decreased 103 to 90 nm with the conductivity of the water bath. Spectroscopic analysis (FT-Raman, FT-IR) showed that the polymorphism of nylon 6 depended on the types of collector (aluminum sheet and water bath). Nylon 6 electrospun nanofibers display theγ-phase while collected in aluminum sheet andα-phase while collection in water bath. The extent of transformation fromγ- toα-phase was linearly increased with temperature and conductivity of the water bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Wong and D. H. Mooney, “Synthetic Biodegradable Polymer Scaffolds”, p.51, Birhausen, Boston, 1997.

    Google Scholar 

  2. T. H. Barrows, “A Comprehensive Guide to Medical and Pharmaceutical Applications”, p.243, Szycher, 1991.

  3. D. J. Mooney and R. S. Langer, “The Biomaterials Handbook”, p.1609, CRC Press Inc., Boca Raton, FL, 1995.

    Google Scholar 

  4. D. H. Reneker and I. Chun,Nanotechnology,7, 216 (1996).

    Article  CAS  Google Scholar 

  5. S. Aryal, N. Dharmaraj, S. R. Bhattarai, M. S. Khil, and H. Y. Kim,J. Nanoscience and Nanotechnology,6, 1 (2006).

    Google Scholar 

  6. D. Li and Y. Xia,Adv. Mater.,16, 1151 (2004).

    Article  CAS  Google Scholar 

  7. K. Ohgo, C. H. Zhao, M. Kobayashi, and T. Asakura,Polymer,44, 841 (2003).

    Article  CAS  Google Scholar 

  8. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaik,Macromolecules,33, 2989 (2000).

    Article  CAS  Google Scholar 

  9. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin,Biomarcomolecules,3, 232 (2002).

    Article  CAS  Google Scholar 

  10. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko,J. Biomed. Mater. Res.,60, 613 (2002).

    Article  CAS  Google Scholar 

  11. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin,Nano Lett.,3, 213 (2003).

    Article  CAS  Google Scholar 

  12. C. J. Buchko, K. M. Kozloff, and D. C. Martin,Biomaterials,22, 1289 (2001).

    Article  CAS  Google Scholar 

  13. S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim,Biomaterials,25, 2595 (2004).

    Article  CAS  Google Scholar 

  14. C. Kim, Y. H. Jung, H. Y. Kim, D. R. Lee, N. Dharmaraj, and K. E. Choi,Macromol. Res.,14, 59 (2006).

    CAS  Google Scholar 

  15. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin,Polymer,40, 7397 (1999).

    Article  CAS  Google Scholar 

  16. K. Song and J. F. Rabolt,Macromolecules,34, 1650 (2001).

    Article  CAS  Google Scholar 

  17. D. R. Holmes, C. W. Bunn, and D. J. Smith,J. Polym. Sci.,17, 159 (1955).

    Article  CAS  Google Scholar 

  18. H. Arimoto, M. Ishibashi, M. Hirai, and Y. Chatani,J. Polym. Sci., Part A,3, 317 (1965).

    Article  CAS  Google Scholar 

  19. N. S. Murphy,J. Polym. Sci., Part B: Polym. Phys.,24, 549 (1986).

    Article  Google Scholar 

  20. D. H. Reneker and I. Chun,Nanotechnology,7, 216 (1996).

    Article  CAS  Google Scholar 

  21. N. Bhattarai, D. I. Cha, S. R. Bhattarai, M. S. Khil, and H. Y. Kim,J. Polym. Sci., Part B: Polym. Phys.,41, 1955 (2003).

    Article  CAS  Google Scholar 

  22. R. C. Weast, “CRC Handbook of Chemistry and Physics”, p.342, CRC Press Inc., Boca Raton, 1988.

    Google Scholar 

  23. R. Tajuddin and R. M. Smith,Analyst,127, 883 (2002).

    Article  CAS  Google Scholar 

  24. R. M. Smith,J. Chromatogr.,31, 975 (2002).

    Google Scholar 

  25. R. M. Smith and R. J. Burgess,Anal. Commun.,33, 327 (1996).

    Article  CAS  Google Scholar 

  26. T. Miyazawa, T. Shimanouchi, and S. Mizushima,J. Chem. Phys.,29, 611 (1958).

    Article  CAS  Google Scholar 

  27. P. J. Hendra, W. F. Maddams, I. A. M. Rayaud, H. A. Willis, and V. Zicky,Spectrochim. Acta.,46, 747 (1990).

    Article  Google Scholar 

  28. T. Miyazawa,J. Mol. Spectrosc.,4, 155 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remant, B.K.C., Kim, K.W., Bhattarai, S.R. et al. Effect of collector temperature and conductivity on the chain conformation of nylon 6 electrospun nanofibers. Fibers Polym 8, 186–191 (2007). https://doi.org/10.1007/BF02875790

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875790

Keywords

Navigation