Skip to main content
Log in

Weyl’s theorem for totally hereditarily normaloid operators

  • Published:
Rendiconti del Circolo Matematico di Palermo Aims and scope Submit manuscript

Abstract

A Banach space operatorTB(χ) is said to behereditarily normaloid, denotedT ∈ ℋN, if every part ofT is normaloid;T ∈ ℋN istotally hereditarily normaloid, denotedT ∈ ℑHN, if every invertible part ofT is also normaloid. Class ℑHN is large; it contains a number of the commonly considered classes of operators. The operatorT isalgebraically totally hereditarily normaloid, denotedTa — ℑHN, both non-constant polynomialp such thatp(T) ∈ ℑHN. For operatorsTa − ℑHN, bothT andT* satisfy Weyl’s theorem; if also either ind(Tμ)≥0 or ind(Tμ)≤0 for all complexμ such thatTμ is Fredholm, thenf(T) andf(T*) satisfy Weyl’s theorem for all analytic functionsf ∈ ℋ(σ(T)). For operatorsTa — ℑHN such thatT has SVEP,T* satisfiesa-Weyl’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiena P.,Classes of operators satisfying a-Weyl’s theorem, (pre-print, 2004).

  2. Aiena P., Monsalve O.,The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged),67 (2001), 461–477.

    MathSciNet  Google Scholar 

  3. Aiena P., Miller T. L., Neumann M. M.,On a localised single valued extension property, Math. Proc. Royal Irish Acad., (to appear).

  4. Aiena P., Villafañe F.,Weyl’s theorem of some classes of operators, Integr. Equat. Op. Th., (to appear).

  5. Berberian S. K.,The Weyl spectrum of an operator, Michigan Math. J.,16 (1969), 273–279.

    Article  MATH  MathSciNet  Google Scholar 

  6. Caradus S. R., Pfaffenberger W. E., Bertram Y.,Calkin Algebras and Algebras of operators on Banach Spaces, Marcel Dekker, New York, 1974.

    MATH  Google Scholar 

  7. Chourasia N. N., Ramanujan P. B.,Paranormal operators on Banach spaces, Bull. Austral. Math. Soc.,21 (1980), 161–168.

    MATH  MathSciNet  Google Scholar 

  8. Coburn L. A.,Weyl’s theorem for non-normal operators, Michigan Math. J.,13 (1966), 285–288.

    Article  MATH  MathSciNet  Google Scholar 

  9. Curto R. E., Han Y. M.,Weyl’s theorem, a-Weyl’s theorem and local spectoral theory, J. London Math. Soc.,67 (2003), 499–509.

    Article  MATH  MathSciNet  Google Scholar 

  10. Curto R. E., Han Y. M.,Weyl’s theorem for algebraically paranormal operators, Integr. Equat. Op. Th.,47 (2003), 307–314.

    Article  MATH  MathSciNet  Google Scholar 

  11. Duggal B. P., Djordjević S. V.,Generalized Weyl’s theorem for a class of operators satisfying a norm condition, Math. Proc. Royal Irish Acad., to appear.

  12. Dunford N. J., Schwartz T.,Linear Operators, Part I, Interscience, New York (1964).

    Google Scholar 

  13. Furuta T.,Invitation to Linear Operators, Taylor and Francis, London (2001)

    MATH  Google Scholar 

  14. Gustafson Karl,Necessary and sufficient conditions for Weyl’s theorem, Michigan Math. J.,19 (1972), 71–81.

    Article  MATH  MathSciNet  Google Scholar 

  15. Young Min Han, An-Hyun Kim,A note on *-paranormal operators, Integ. Equat. Op. Th.,49 (2004), 435–444.

    MATH  Google Scholar 

  16. Young Min Han, Jun Ik Lee and Derming Wang,Riesz idempotents and Weyl’s theorem for w-hyponormal operators, Integr. Equat. Op. Th. (to appear).

  17. Harte R. E., Lee W. Y.,Another note on Weyl’s theorem, Trans. Amer. Math. Soc.,349 (1997), 2115–2124.

    Article  MATH  MathSciNet  Google Scholar 

  18. Heuser H. G.,Functional Analysis, John Wiley and Sons (1982).

  19. Hou J., Zhang X.,On the Weyl spectrum: Spectral mapping theorem and Weyl’s theorem, J. Math. Anal. Appl.,220 (1998), 760–768.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kato T.,Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Math. Anal.,6 (1958), 261–322.

    MATH  Google Scholar 

  21. Laursen K. B., Neumann M. N.,Introduction to local spectral theory, Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  22. Lee W. Y., Lee S. H.,A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J.,38 (1996), 61–64.

    MATH  MathSciNet  Google Scholar 

  23. Mbekhta M.,Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J.,29 (1987), 159–175.

    MATH  MathSciNet  Google Scholar 

  24. Oudghiri M.,Weyl’s and Browder’s theorem for operators satisfying the SVEP, Studia Math., (to appear).

  25. Rakočević V.,On the essential approximate point spectrum II, Math. Vesnik,36 (1984), 89–97.

    MATH  Google Scholar 

  26. Rakočević V.,Approximate point spectrum and commuting compact perturbations, Glasgow Math. J.,28 (1986), 193–198.

    Article  MathSciNet  MATH  Google Scholar 

  27. Rakočević V.,Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl.,34 (1989), 915–919.

    MathSciNet  MATH  Google Scholar 

  28. Schmoeger C.,The spectral mapping theorem for the essential approximate point spectrum, Coll. Math.,74 (1997), 167–176.

    MATH  MathSciNet  Google Scholar 

  29. Weyl H.,Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo,27 (1909), 373–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duggal, B.P. Weyl’s theorem for totally hereditarily normaloid operators. Rend. Circ. Mat. Palermo 53, 417–428 (2004). https://doi.org/10.1007/BF02875734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875734

AMS(MOS) subject classification (2000)

Key words and phrases

Navigation