Fibers and Polymers

, Volume 6, Issue 2, pp 131–138 | Cite as

Constitutive equations for dilute bubble suspensions and rheological behavior in simple shear and uniaxial elongational flow fields



A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases asCa increases. The normal stress difference (NSD) under the simple shear has the largest value whenCa is around 1 and the ratio of the first NSD to the second NSD has the value of 3/4 for largeCa but 2 for smallCa. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.


Dilute bubble suspension Bubble deformation Interface tensor Capillary number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. L. Maffettone and M. Minale,J. Non-Newt. Fluid Mech.,78, 227 (1998).CrossRefGoogle Scholar
  2. 2.
    M. Doi and T. Ohta,Int. J. Chem. Phy.,95(2), 1242 (1991).CrossRefGoogle Scholar
  3. 3.
    D. Klempner and K. C. Frisch, “Handbook of Polymeric Foams and Foam Technology”, Hanser Publishers, New York, 1991.Google Scholar
  4. 4.
    H. Park and J. R. Youn,Journal of Engineering for Industry, ASME Transactions,114(3), 323 (1992).Google Scholar
  5. 5.
    W. J. Cho, H. Park, and J. R. Youn,Journal of Engineering Manufacture,208, 121 (1994).CrossRefGoogle Scholar
  6. 6.
    H. Park and J. R. Youn,Polymer Engineering and Science,35(23), 1899 (1995).CrossRefGoogle Scholar
  7. 7.
    J. R. Youn and H. Park,Polymer Engineering and Science,39(3), 457 (1999).CrossRefGoogle Scholar
  8. 8.
    C. Kim and J. R. Youn,Polymer-Plastics Technology and Engineering,39(1), 163 (2000).CrossRefGoogle Scholar
  9. 9.
    M. S. Koo, K. Chung, and J. R. Youn,Polymer Engineering and Science,41(7), 1177 (2001).CrossRefGoogle Scholar
  10. 10.
    W. H. Lee, S. W. Lee, T. J. Kang, K. Chung, and J. R. Youn,Fibers and Polymers,3(4), 159 (2002).Google Scholar
  11. 11.
    C. W. Macosko, “Rheology: Principles, Measurements, and Applications”, p.425, Wiley, New York, 1994.Google Scholar
  12. 12.
    E. W. Llewellin, H. M. Mader, and S. D. R. Wilson,Proceedings of the Royal Society of London Series A,458, 987 (2002).CrossRefGoogle Scholar
  13. 13.
    A. C. Rust and M. Manga,J. Non-Newt. Fluid Mech.,104, 53 (2002).CrossRefGoogle Scholar
  14. 14.
    Y. M. Lim, D. Seo, and J. R. Youn,Korea-Australia Rheology Jounal,16(1), 47 (2004).Google Scholar
  15. 15.
    N. A. Frankel and A. Acrivos,Journal of Fluid Mechanics,44, 65 (1970).CrossRefGoogle Scholar
  16. 16.
    W. R. Schowalter, C. E. Chaffey, and H. Brenner,J. Colloid Interface Sci.,26, 152 (1968).CrossRefGoogle Scholar
  17. 17.
    N. E. Jackson and C. L. Tucker,J. Rheol.,47(3), 659 (2003).CrossRefGoogle Scholar
  18. 18.
    W. Yu and M. Bousmina,J. Rheol.,47(4), 1011 (2003).CrossRefGoogle Scholar
  19. 19.
    M. Manga and M. Loewenberg,Journal of Volcanology and Geothermal Research,105, 19 (2001).CrossRefGoogle Scholar
  20. 20.
    V. Cristini, R. W. Hooper, C. W. Macosko, M. Simeone, and S. Guido,Industrial & Engineering Chemistry Research,41, 6305 (2002).CrossRefGoogle Scholar
  21. 21.
    V. Cristini, S. Guido, A. Alfani, J. Blawzdziewicz, and M. Loewenberg,J. Rheol.,47, 1283 (2003).CrossRefGoogle Scholar
  22. 22.
    Y. Y. Renardy, M. Renardy, and V. Cristini,European Journal of Mechanics B/Fluids,21, 49 (2002).CrossRefGoogle Scholar
  23. 23.
    A. S. Almusallam, R. G. Larson, and M. J. Solomon,J. Rheol.,44, 1055 (2000).CrossRefGoogle Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, “Fluid Mechanics”, p.76, Addison-Wesley Publishing Company, New York, 1959.Google Scholar
  25. 25.
    E. D. Wetzel and C. L. Tucker,International Journal of Multiphase Flow,25, 35 (1999).CrossRefGoogle Scholar
  26. 26.
    J. F. Palierne,Rheologica Acta,29, 204 (1990).CrossRefGoogle Scholar
  27. 27.
    G. W. M. Peters, S. Hansen, and H. E. H. Meijer,J. Rheol.,45(3), 659 (2001).CrossRefGoogle Scholar
  28. 28.
    D. Graebling, R. Muller, and J. F. Palierne,Macromolecules,26, 320 (1993).CrossRefGoogle Scholar
  29. 29.
    H. M. Lee and O. O. Park,J. Rheol.,38(5), 1405 (1994).CrossRefGoogle Scholar
  30. 30.
    J. K. Mackenzie,Proceedings of the Royal Society of London Series B,63, 2 (1950).Google Scholar
  31. 31.
    G. I. Taylor,Proceedings of the Royal Society of London Series A,138, 41 (1932).CrossRefGoogle Scholar
  32. 32.
    H. P. Grace,Chemical Engineering Communications,14, 225 (1982).CrossRefGoogle Scholar
  33. 33.
    D. J. Stein and F. J. Spera,Journal of Volcanology and Geothermal Research,49, 157 (1992).CrossRefGoogle Scholar
  34. 34.
    E. D. Wetzel and C. L. Tucker,Journal of Fluid Mechanics,426, 199 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2005

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations