Skip to main content
Log in

Effects of interstitial impurities on phase equilibria

  • Published:
Bulletin of Alloy Phase Diagrams

Abstract

Because interstitial elements are ubiquitous in the environment, it is inevitable that they will be present as contaminants in most metals unless unusual precautions are taken in preparing and/or handling them. Data are available which show that the common interstitial elements (oxygen, nitrogen, carbon, and hydrogen) interact with most metals to modify both the electron distributions and the vibrational behavior. A small amount of an interstitial impurity can have a drastic effect on the position of the phase boundaries of an equilibrium diagram, the stability of a phase, the allotropic behavior of a metal, and the melting point of a metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  • 51Car: O. N. Carlson and H. A. Wilhelm, “The Zr−Sn Alloy System,” USAEC Report No. TID-5061 (1951).

  • 53Car: O. N. Carlson and E. Borders, “Effect of Carbon Impurities on Zirconium-Tin Alloy Equilibrium,” USAEC Report No. TID-5151, 253−263 (1953).

  • 53Mcp: D. J. McPherson and M. Hansen, “The System Zirconium-Tin,”Trans. ASM 45, 915–931 (1953).

    Google Scholar 

  • 54Hag: G. Hägg and N. Schönberg, “β-Tungsten as a Tungsten Oxide,”Acta Crystallogr., 7 351–352 (1954).

    Article  Google Scholar 

  • 54Now: H. Nowotny, E. Parthè, R. Kieffer, and F. Benesovsky, “The Three-Component System Mo−Si−C,”Monatsh. Chem., 85, 255–272 (1954).

    Article  Google Scholar 

  • 54Ori: R. A. Oriani and T. S. Jones, “An Apparatus for the Determination of the Solidus Temperature of High-Melting Metals,”Rev. Sci. Instr., 25, 248–250 (1954).

    Article  ADS  Google Scholar 

  • 55Car: O. N. Carlson, D. J. Kenney, and H. A. Wilhelm, “The Aluminum-Vanadium Alloy System,”Trans. ASM, 47, 520–542 (1955).

    Google Scholar 

  • 56Now: H. Nowotny, A. W. Searcy, and J. E. Orr, “Structures of Some Germanides of Formula M5Ge3,”J. Phys. Chem., 60, 677–678 (1956).

    Article  Google Scholar 

  • 56Wil: H. A. Wilhelm, “Thorium,” inProgress in Nuclear Energy. V Metallurgy and Fuels H. M. Finniston and J. P. Howe, Ed. Pergamon Press, New York, 220 (1956).

    Google Scholar 

  • 58Gib: D. Gibson, B. A. Loomis, and O. N. Carlson, “Thorium-Zirconium and Thorium-Hafnium Alloy Systems,”Trans. ASM, 50, 348–369 (1958).

    Google Scholar 

  • 58Gla: E. I. Gladyshevskii and Yu. V. Kuzma, “X-Ray Diffraction Study of Vanadium-Germanium Alloys,”Dop. Akad. Nauk Ukr. SSR, 1208–1211 (1958).

  • 58Par: E. Parthè, and J. T. Norton, “Crystal Structures of Zr5Ge3, Ta5Ge3, and Cr5Ge3Acta Crystallogr., 11, 14–17 (1958).

    Article  Google Scholar 

  • 59Smi: J. F. Smith and B. T. Bernstein, “Effects of Impurities on the Crystallographic Modifications of Calcium,”J. Electrochem. Soc., 106, 448–451 (1959).

    Article  Google Scholar 

  • 60Eas: D. T. Eash and O. N. Carlson, “Investigation of the Thorium-Yttrium System,”Trans. ASM, 52, 1097–1114 (1960).

    Google Scholar 

  • 60Edw: A. R. Edwards, “Proposed Transformations in Pure Chromium,”J. Aust. Inst. Met., 5, 182–185 (1960).

    Google Scholar 

  • 60Eva: D. S. Evans and G. V. Raynor, “Lattice Spacings in Thorium-Yttrium Alloys,”J. Nucl. Mater., 2, 209–215 (1960).

    Article  ADS  Google Scholar 

  • 61Eva: D. S. Evans and G. V. Raynor, “The Solubility of Zirconium in α-Thorium,”J. Nucl. Mater., 4, 66–69 (1961).

    Article  ADS  Google Scholar 

  • 61Joh: R. H. Johnson and R. W. K. Honeycombe, “The Solid Solubility of Zirconium in α-Thorium,”J. Nucl. Mater., 4, 59–65. (1961).

    Article  ADS  Google Scholar 

  • 61Pet: D. T. Peterson and V. G. Fattore, “Calcium-Calcium Hydride System,”J. Phys. Chem., 65, 2062–2064 (1961).

    Article  Google Scholar 

  • 61Pop: I. A. Popov and N. V. Shiryaeva, “Equilibrium Diagram of the Copper-Niobium System,”Russ. J. Inorg. Chem., 6, 1184–1187 (1961).

    Google Scholar 

  • 62Sto: E. K. Storms and R. J. McNeal, “The Vanadium-Vanadium Carbide System,”J. Phys. Chem., 66, 1401–1408 (1962).

    Article  Google Scholar 

  • 63Hol: H. Holleck, H. Nowotny, and F. Benesovsky, “The System Vanadium-Germanium,”Monatsh. Chem., 94, 497–501 (1963) in German.

    Article  Google Scholar 

  • 63Hol2: H. Holleck, H. Nowotny, and F. Benesovsky, “Intermetallic Phases with the β-Wolfram Structure,”Monatsh. Chem., 94, 473–476 (1963).

    Article  Google Scholar 

  • 63Koc: Y. A. Kocherzhinskii, G. F. Kobzenko, V. M. Pan, V. K. Sviridenko, and L. M. Yupko, “Calibration of the VR-5/20 Thermocouple by Critical Points up to 3000°C,”Sb. Nauchn. Tr. Inst. Metallofiz.., Akad. Nauk Ukr., SSR, 17, 209–210 (1963).

    Google Scholar 

  • 64Sav: E. M. Savitskii, V. V. Baron, U. K. Duisemaliev, and Yu. V. Efimov, “Phase Diagram of the Vanadium-Copper System,”Vestn. Akad. Nauk Kaz. SSR, 20, 38–44 (1964).

    Google Scholar 

  • 66Pet: D. T. Peterson and R. P. Colburn, “The Strontium-Strontium Hydride Phase System,”J. Phys. Chem., 70, 468–471 (1966).

    Article  Google Scholar 

  • 66Sav: E. M. Savitskii, V. V. Baron, and Yu. V. Efimov, “New Vanadium Compound of the Cr3Si Type,”Dokl. Akad. Nauk SSSR 171 331–332 (1966); TR:Sov. Phys.-Dokl., 11, 988–989 (1967).

    Google Scholar 

  • 67Aly: S. Y. Alyamovskii, G. P. Shveikin, P. V. Gel'd, and M. Volkova, “Orthorhombic β′ Phases of Niobium and Vanadium Carbides,”Russ. J. Inorg. Chem., 12, 301–303 (1967).

    Google Scholar 

  • 69All: C. Allibert, J. Driole, and E. Bonner, “Equilibrium Phase Diagram of the Copper-Niobium System,”C. R. Acad. Sci. Paris, C 268, 1579–1581 (1969).

    Google Scholar 

  • 69Rud: E. Rudy, “Compendium of Phase Diagram Data,” AFMLTR-65-2 Part IV, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio (1969).

    Google Scholar 

  • 70Sve: V. N. Svechnikov, V. M. Pan, and V. I. Latysheva, “Absence of Intermediate Phases in a Vanadium-Indium System,”Metallofizika, 27, 175–177 (1970).

    Google Scholar 

  • 74Leg: J. M. Leger and H. T. Hall “Pressure and Temperature Formation of A3B Compounds II. Nb3Ge, Nb3Sn, Nb3Pb, V−In and V−Pb,”J. Less-Common Met., 34, 17–24 (1974).

    Article  Google Scholar 

  • 75Smi: J. F. Smith, O. N. Carlson, D. T. Peterson, and T. E. Scott “Thorium: Preparation and Properties,” Iowa State University Press, Ames, IA, 188, (1975).

    Google Scholar 

  • 77All: C. Allibert and J. Driole, “A Study of the Equilibrium Phases in the System Cu−V,”J. Less-Common Met., 51, 25–33 (1977).

    Article  Google Scholar 

  • 77Gre: J. D. Greiner, D. T. Peterson, and J. F. Smith, “Comparison of the Single-Crystal Elastic Constants of Th and a ThC0.063 Alloy,”J. Appl. Phys., 48, 3357–3361 (1977).

    Article  ADS  Google Scholar 

  • 77Sch: D. M. Schlader and J. F. Smith, “Shear Moduli of a Niobium Single Crystal with Hydrogen Additions at Elevated Temperature,”J. Appl. Phys., 48, 5062–5066 (1977).

    Article  ADS  Google Scholar 

  • 78Ver: J. D. Verhoeven and E. D. Gibson, “The Monotectic Reaction in Cu−Nb Alloys,”J. Mater. Sci., 13, 1576–1582, (1978).

    Article  Google Scholar 

  • 79Dan: S. A. Danilkin, V. V. Zakurkin, M. G. Zemlyanov, S. I. Morozov, V. V. Sumin, and Yu. L. Shitikov, “Investigation of Impurity Vibrations in α Vanadium-Oxygen Solid Solution by Inelastic Neutron Scattering,”Fiz. Tverd. Tel. 21, 3674–3676 (1979);Sov. Phys. Solid State, 21, 2086–2088 (1979).

    Google Scholar 

  • 79Gre: J. D. Greiner, O. N. Carlson, and J. F. Smith, “Single-Crystal Elastic Constants of Vanadium and Vanadium with Oxygen Additions,”J. Appl. Phys., 50, 4394–4398, (1979).

    Article  ADS  Google Scholar 

  • 81Smil: J. F. Smith, “The V (Vanadium) System,”Bull. Alloy Phase Diagrams, 2, 40–41 (1981).

    Google Scholar 

  • 81Smi2: J. F. Smith and O. N. Carlson, “The Cu−V (Copper-Vanadium) System,”Bull. Alloy Phase Diagrams, 2, 348–351 (1981).

    Article  Google Scholar 

  • 81Smi3: J. F. Smith, “The Ge-V (Germanium-Vanadium) System,”Bull. Alloy Phase Diagrams, 2, 205–209 (1981).

    Article  Google Scholar 

  • 81Smi4: J. F. Smith, “The Si−V (Silicon-Vanadium) System,”Bull. Alloy Phase Diagrams, 2, 45–48 (1981).

    Google Scholar 

  • 81Smi5: J. F. Smith, “The Pb−V (Lead-Vanadium) System,”Bull. Alloy Phase Diagrams, 2, 209 (1981).

    Article  Google Scholar 

  • 83Ili: L. B. Iliyev, V. I. Ovcharenko, and V. A. Pervakov, “Heat Capacity of Vanadium with an Oxygen Impurity at Low Temperatures,”Fiz. Met. Metalloved., 55, 189–191 (1983);Phys. Met. Metallogr., 55, 172–174 (1983).

    Google Scholar 

  • 83Nak: J.-I. Nakamura, Y. Takahashi, and J. F. Smith, unpublished research (1983); thesis, Univ. Tokyo (1982).

  • 85Smi: J. F. Smith and K. J. Lee, “The In−V (Indium-Vanadium) System,”Bull. Alloy Phase Diagrams6, 66–68 (1985).

    Article  Google Scholar 

  • 85Wea: J. H. Weaver, D. T. Peterson, R. A. Butera, and A. Fujimori, “Electronic Interactions in Metal-Hydrogen Solid Solutions: ScHx, YHx, and V0.75Nb0.25Hx,”Phys. Rev. B, 32, 3562–3567 (1985).

    Article  ADS  Google Scholar 

  • 86Spi: W. A. Spitzig, C. V. Owen, and T. E. Scott, “Effects of Nitrogen on the Mechanical Behavior of Hydrogenated V, Nb and Ta,”Metall. Trans. A, 17, 527–535 (1986).

    Article  Google Scholar 

  • 86Ver: J. D. Verhoeven, F. A. Schmidt, E. D. Gibson, and W. A. Spitzig, “Copper-Refractory Metal Alloys,”J. Met., 38(9) 20–24 (1986).

    Google Scholar 

  • 87Smi: J. F. Smith and O. N. Carlson, “The Niobium-Carbon System: A Review,” to be published inJ. Nucl. Mater. (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, O.N., Smith, J.F. Effects of interstitial impurities on phase equilibria. Bulletin of Alloy Phase Diagrams 8, 208–213 (1987). https://doi.org/10.1007/BF02874906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02874906

Keywords

Navigation