Fibers and Polymers

, Volume 1, Issue 1, pp 37–44 | Cite as

Three dimensional FEM simulation for spinning of non-circular fibers



A finite element method is employed for a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis for the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m, only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied for the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ziabicki, “Fundamentals of Fiber Formation”, Wiley Interscience, London, 1976.Google Scholar
  2. 2.
    D. G. Baird and D. I. Collias, “Polymer Processing”, Butterworth-Heinemann, Boston, 1995.Google Scholar
  3. 3.
    A. Ziabicki and H. Kawai, “High-speed Fiber Spinning”, Wiley Interscience, New York, 1985.Google Scholar
  4. 4.
    S. Middleman, “Fundamentals of Polymer Processing”, McGraw-Hill Inc., New York, 1977.Google Scholar
  5. 5.
    R. W. Moncrieff, “Man-made Fibers”, Butterworth, London, 1975.Google Scholar
  6. 6.
    Z. Tadmor, C. G. Gogos, “Principles of Polymer Processing”, Wiley Interscience, New York, 1979.Google Scholar
  7. 7.
    T. Nakajima, “Advanced Fiber Spinning Technology”, Woodhead, Cambridge, 1994.Google Scholar
  8. 8.
    S. Kase and T. Matsuo,J. Polym. Sci.,3, 2541 (1965).Google Scholar
  9. 9.
    M. A. Matovich and J. R. A. Pearson,I&EC. Fund.,8–3, 512 (1969).CrossRefGoogle Scholar
  10. 10.
    C. D. Han and L. Segal,J. Appl. Polym. Sci.,14, 2973 (1970).CrossRefGoogle Scholar
  11. 11.
    M. M. Denn, C. J. S. Petrie, and P. Avenas,AIChE. J.,21(4), 791 (1975).CrossRefGoogle Scholar
  12. 12.
    D. K. Gagon and M. M. Denn,Polym. Eng. & Sci.,21, 844 (1981).CrossRefGoogle Scholar
  13. 13.
    T. R. Barnett,Appl. Polym. Sym.,6, 51 (1967).Google Scholar
  14. 14.
    M. Copley and N. H. Chamberlain,Appl. Polym. Sym.,6, 27 (1967).Google Scholar
  15. 15.
    B. T. F. Chung and V. Iyer,J. Appl. Polym. Sci.,44, 663 (1992).CrossRefGoogle Scholar
  16. 16.
    J. R. Fisher, M. M. Denn, and R. I. Tanner,Ind. Eng. Chem. Fundam.,19, 195 (1980).CrossRefGoogle Scholar
  17. 17.
    J. R. A. Pearson and S. M. Richardson, “Computational Analysis of Polymer Processing”, Applied Science Publishers, London, 1983.Google Scholar
  18. 18.
    M. J. Crochet and R. Keunings,J. Non-Newt. Fluid Mech.,7, 199 (1980).CrossRefGoogle Scholar
  19. 19.
    E. Mitsoulis and F. L. Heng,Rheol. Acta,26, 414 (1987).CrossRefGoogle Scholar
  20. 20.
    M. J. Crochet and R. Keunings,J. Non-Newt. Fluid Mech.,10, 85 (1982).CrossRefGoogle Scholar
  21. 21.
    R. E. Nickell, R. I. Tanner, and B. Caswell,J. Fluid Mech.,65, 189 (1974).CrossRefGoogle Scholar
  22. 22.
    W. P. Bell and D. D. Edie,J. Appl. Polym. Sci.,33, 1073 (1987).CrossRefGoogle Scholar
  23. 23.
    K. W. Hutchenson, D. D. Edie, and D. M. Riggs,J. Appl. Polym. Sci.,29, 3621 (1984).CrossRefGoogle Scholar
  24. 24.
    M. Matui,Trans. Soc. Rheol.,20:3, 465 (1976).CrossRefGoogle Scholar
  25. 25.
    Y. D. Kwon and D. C. Prevosek,J. Appl. Polym. Sci.,23, 3105 (1979).CrossRefGoogle Scholar
  26. 26.
    J. Gould and F. S. Smith,J. Text. Inst.,No. 1, 38 (1980).Google Scholar
  27. 27.
    A. Dutta,Tex. Res. J.,57, 13 (1987).CrossRefGoogle Scholar
  28. 28.
    A. Dutta,Tex. Res. J.,59, 411 (1989).CrossRefGoogle Scholar
  29. 29.
    A. Dutta,Polym. Eng. & Sci.,27, 1050 (1987).CrossRefGoogle Scholar
  30. 30.
    A. Dutta, and V. M. Nadkarni,Tex. Res. J.,54, 35 (1984).CrossRefGoogle Scholar
  31. 31.
    A. V. Shenoy and V. M. Nadkarni,Tex. Res. J.,54, 778 (1984).CrossRefGoogle Scholar
  32. 32.
    C. Jinan, T. Kikutani, A. Takaku, and J. Shimizu,J. Appl. Polym. Sci.,37, 2683 (1989).CrossRefGoogle Scholar
  33. 33.
    R. M. Patel, J. H. Bheda, and J. E. Spruiell,J. Appl. Polym. Sci.,42, 1671 (1991).CrossRefGoogle Scholar
  34. 34.
    C. T. Kiang and J. A. Cuculo,J. Appl. Polym. Sci.,46, 55 (1992).CrossRefGoogle Scholar
  35. 35.
    C. T. Kiang and J. A. Cuculo,J. Appl. Polym. Sci.,46, 67 (1992).CrossRefGoogle Scholar
  36. 36.
    J. F. Hotter, J. A. Cuculo, and P. A. Tucker,J. Appl. Polym. Sci.,43, 1511 (1991).CrossRefGoogle Scholar
  37. 37.
    J. S. Denton, J. A. Cuculo, and P. A. Tucker,J. Appl. Polym. Sci.,57, 939 (1995).CrossRefGoogle Scholar
  38. 38.
    Y. C. Bhuvanesh and V. B. Gupta,J. Appl. Polym. Sci.,58, 663 (1991).CrossRefGoogle Scholar
  39. 39.
    K. F. Zieminski and J. E. Spruiell,J. Appl. Polym. Sci.,35, 2223 (1988).CrossRefGoogle Scholar
  40. 40.
    C. Y. Lin, P. A. Tucker, and J. A. Cuculo,J. Appl. Polym. Sci.,46, 531 (1992).CrossRefGoogle Scholar
  41. 41.
    T. Hongu and G. O. Philips, “New Fibers”, New York, Ellis Horwood, 1990.Google Scholar
  42. 42.
    M. Lewin and J. Preston, “Handbook of Fiber Science & Technology: Vol. High Technology Fibers part D”, Marcel Dekker Inc., New York, 1983.Google Scholar
  43. 43.
    C. W. Park,AIChE. J.,36, 197 (1990).CrossRefGoogle Scholar
  44. 44.
    W. S. Lee and C. W. Park,J. Appl. Mech.,36, 511 (1990).Google Scholar
  45. 45.
    M. A. Huneault, P. G. Lafleur, and P. J. Carreau,Polym. Eng. & Sci.,30, 1544 (1990).CrossRefGoogle Scholar
  46. 46.
    R. M. Griffith and J. T. Tsai,Polym. Eng. & Sci.,20, 1811 (1980).CrossRefGoogle Scholar
  47. 47.
    C. D. Han, “Rheology in Polymer Processing”, Academic Press, New York, 1976.Google Scholar
  48. 48.
    D. C. Huang and J. L. White,Polym. Eng. Sci.,19, 609 (1979).CrossRefGoogle Scholar
  49. 49.
    C. D. Han, R. R. Lamonte, and L. H. Drexler,J. Appl. Polym. Sci.,17, 1165 (1973).CrossRefGoogle Scholar
  50. 50.
    Y. W. Noh, “Studies on the Melt Spinning of Rectangular PET Fibers”, Ph.D. Dissertation, SNU, 1996.Google Scholar
  51. 51.
    J. W. Park and H. Y. Kim,J. Kor. Fiber Soc.,34, 119 (1997).Google Scholar
  52. 52.
    I. Jung, M. S. Thesis, SNU, 1999.Google Scholar
  53. 53.
    T. H. Oh, P. S. Lee, S. Y. Kim, and H. J. Shim,Tex. Res. J.,68, 449 (1998).CrossRefGoogle Scholar
  54. 54.
    C. Bos,Int. J. Heat Mass Transfer,31(1), 167 (1988).CrossRefGoogle Scholar
  55. 55.
    N. Phan-Thien,J. Non-Newt. Fluid Mech.,26, 327 (1988).CrossRefGoogle Scholar
  56. 56.
    B. J. Yarusso,J. Non-Newt. Fluid Mech.,40, 103 (1991).CrossRefGoogle Scholar
  57. 57.
    A. N. Hrymak, and J. Vlachopoulos,Rheol. Acta,28, 121 (1989).CrossRefGoogle Scholar
  58. 58.
    A. Karaginnis, A. N. Hrymak, and J. Vlachopoulos,AIChE. J.,34, 2088 (1988).CrossRefGoogle Scholar
  59. 59.
    A. A. Hamza and H. I. A. El-Kader,Tex. Res. J.,53, 205 (1983).CrossRefGoogle Scholar
  60. 60.
    R. Keunings, M. J. Crochet, and M. M. Denn,Ind. Eng. Chem. Fundam.,22, 347 (1983).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2000

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations