Skip to main content
Log in

Phase transformation of poly(trimethylene terephthalate) in crystalline state: An atomistic modeling approach

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The phase transformation of poly(trimethylene terephthalate) in crystalline state was simulated by atomistic modeling using molecular mechanics technique. The crystalline structure of PTT was successfully prepared using the well-defined unit cell structure of PTT and was satisfactorily verified by comparing that with the structure obtained from the x-ray diffraction experiments. The basic elastic properties were predicted in this study, showing that the crystalline structure of PTT is very pliable to the deformation at small strain. When the crystalline structure of PTT was stepwise deformed up to 50% of strain in chain direction under uniaxial extension condition, the change in dihedral angle of trimethylene unit fromgg tott conformation was accompanied with a large increase of stress, indicating that the phase transformation of PTT in crystalline state is difficult to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Ward and M. A. Wilding,J. Polym. Sci., Polym. Phys. Ed.,14, 263 (1976).

    Article  CAS  Google Scholar 

  2. R. Daubeny, C. W. Bunn, and C. J. Brown,Proc. Roy Soc (London),A226, 531 (1954).

    Google Scholar 

  3. S. Arnott and A. J. Wonacott,Polymer,7, 157 (1966).

    Article  CAS  Google Scholar 

  4. S. Poulin-Dandurand, S. Pérez, J. F. Revol, and F. Brisse,Polymer,20, 419 (1979).

    Article  CAS  Google Scholar 

  5. I. J. Desborough, I. H. Hall, and J. Z. Neisser,Polymer,20, 545 (1979).

    Article  CAS  Google Scholar 

  6. E. Jakeways, I. M. Ward, M. A. Wilding, I. H. Hall, I. J. Desborough, and M. G. Pass,J. Polym. Sci., Polym. Phys. Ed.,13, 799 (1975).

    Article  CAS  Google Scholar 

  7. R. Jakeways, T. Smith, I. M. Ward, and M. A. Wilding,J. Polym. Sci., Polym. Lett. Ed.,14, 41 (1976).

    Article  CAS  Google Scholar 

  8. I. H. Hall and M. G. Pass,Polymer,17, 807 (1976).

    Article  CAS  Google Scholar 

  9. M. Yokouchi, Y. Sakakibara, Y. Chatani, H. Tadokoro, T. Tanaka, and K. Yoda,Macromolecules,9, 266 (1976).

    Article  CAS  Google Scholar 

  10. K. Tashiro, Y. Nakai, M. Kobayashi, and H. Tadokoro,Macromolecules,13, 137 (1980).

    Article  CAS  Google Scholar 

  11. S. Nitzsche, Y. K. Wang, and S. L. Hsu,Macromolecules,25, 2397 (1992).

    Article  CAS  Google Scholar 

  12. A. M. Joly, G. Nemoz, A. Douillard, and G. Vallet,Makromol. Chem.,176, 479 (1975).

    Article  CAS  Google Scholar 

  13. Z. Mencik,J. Polym. Sci., Polym. Phys. Ed.,13, 2178 (1975).

    Article  Google Scholar 

  14. S. Poulin-Dandurand, S. Perez, J. F. Revol, and F. Brisse,Polymer,20, 419 (1979).

    Article  CAS  Google Scholar 

  15. I. J. Desborough, I. H. Hall, and J. Z. Neisser,Polymer,20, 545 (1979).

    Article  CAS  Google Scholar 

  16. F. M. Lu and J. E. Spruiell,J. Appl. Polym. Sci.,31, 1595 (1986).

    Article  CAS  Google Scholar 

  17. M. Parrinello and A. Rahman,Phys. Rev. Lett.,45, 1196 (1980).

    Article  CAS  Google Scholar 

  18. M. Parrinello and A. Rahman,J. Appl. Phys.,52, 7182 (1981).

    Article  CAS  Google Scholar 

  19. M. Parrinello and A. Rahman,J. Chem. Phys.,76, 2662 (1982).

    Article  CAS  Google Scholar 

  20. R. A. Sorensen, W. B. Liau, and R. H. Boyd,Macromolecules,21, 194 (1988).

    Article  CAS  Google Scholar 

  21. R. A. Sorensen, W. B. Liau, L. Kesner, and R. H. Boyd,Macromolecules,21, 200 (1988).

    Article  CAS  Google Scholar 

  22. G. C. Rutledge and U. W. Suter,Macromolecules,24, 1921 (1991).

    Article  CAS  Google Scholar 

  23. G. C. Rutledge, U. W. Suter, and C. D. Papaspyrides,Macromolecules,24, 1934 (1991).

    Article  CAS  Google Scholar 

  24. X. Yang and S. L. Hsu,Macromolecules,24, 6680 (1991).

    Article  CAS  Google Scholar 

  25. S. S. Jang and W. H. Jo,J. Chem. Phys.,110, 7524 (1999)

    Article  CAS  Google Scholar 

  26. S. S. Jang and W. H. Jo,Polymer,40, 9081 (1999).

    Google Scholar 

  27. S. S. Jang and W. H. Jo,Macromol. Theory Simul.,8, 1 (1999).

    Article  CAS  Google Scholar 

  28. H. Tadokoro, “Structure of Crystalline Polymers”, John Wiley and Sons, New York, 1979.

    Google Scholar 

  29. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff,J. Am. Chem. Soc.,114, 10024 (1992).

    Article  Google Scholar 

  30. A. K. Rappé and W. A. Goddard III,J. Phys. Chem.,95, 3358 (1991).

    Article  Google Scholar 

  31. N. Karasawa and W. A. Goddard III,J. Phys. Chem.,93, 7320 (1989).

    Article  CAS  Google Scholar 

  32. L. E. Alexander, “X-Ray Diffraction Methods in Polymer Science”, John Wiley and Sons, New York, 1969.

    Google Scholar 

  33. M. Kakudo and N. Kasai, “X-Ray Diffraction By Polymers”, Elsevier, New York, 1972.

    Google Scholar 

  34. J. F. Nye, “Physical Properties of Crystals”, 2nd edition, Oxford University Press, Oxford, 1985.

    Google Scholar 

  35. E. Schreiber, O. L. Anderson, and N. Soga, “Elastic Constants and Their Measurement”, McGraw-Hill, New York, 1973.

    Google Scholar 

  36. D. T. Grubb, “Elastic Properties of Crystalline Polymers”, in:Material Science and Technology, vol. 12, (R. W. Cahn, P. Haasen, E. J. Kramer, Eds.), VCH, Weinheim, 1993.

    Google Scholar 

  37. P. B. Bowden and R. J. Young,J. Mater. Sci.,9, 2034 (1974).

    Article  CAS  Google Scholar 

  38. R. F. Saraf and R. S. Porter,J. Polym. Sci., Polym. Phys. Ed.,26, 1049 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Ho Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, S.S., Jo, W.H. Phase transformation of poly(trimethylene terephthalate) in crystalline state: An atomistic modeling approach. Fibers Polym 1, 18–24 (2000). https://doi.org/10.1007/BF02874872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02874872

Keywords

Navigation