Skip to main content
Log in

Marangoni migration of a methanol drop in cyclohexane matrix in a closed cavity

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

In the present paper the thermo-solutal-capillary (Marangoni) migration of a methanol liquid drop, which exhibits a miscibility gap in solution with cyclohexane, is studied. The simulation starts from the drop injection in a closed cavity with differentially heated end-walls. The paper is devoted to the preparation of a MAXUS 5 sounding rocket space experiment. The main goal of the analysis is to clarify if and how the dissolution process affects the drop migration. The numerical code is based on the modern level-set technique. Non steady and steady migration speeds are determined for different drop radii and temperature differences during the whole drop migration along the cavity axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Predel B, Ratke L, Fredriksson H.: Fluid Science and Materials Science in Space. Walter HU (ed), Springer, Berlin, 1987.

    Google Scholar 

  2. Ratke L.: Immiscible Liquid metals and organics. DGM Informationsgesellshaft, 1993.

  3. Young NO, Goldstein JS, Block MJ.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 1959;6; 350–356.

    Article  MATH  Google Scholar 

  4. Bratukhin YK.: Thermocapillary drift of a drop of viscous liquid. Iz. Ak. Nauk SSSR, Mekh. Zhid. i Gaza, 1975;5; 157–161.

    Google Scholar 

  5. Szymczyk J, Siekmann J.: Numerical calculation of the thermocapillary motion of a bubble under microgravity. Chem. Eng. Comm, 1988;69; 129–147.

    Article  Google Scholar 

  6. Balasubramanian R, Lavery J.: Numerical simulation of thermocapillary bubble migration under microgravity for large Reynold and Marangoni numbers. Numerical Heat Transfer Part A 1989;16; 175–187.

    Article  Google Scholar 

  7. Balasubramanian R, Lacy C, Wozniak G, Subramanian S.: Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys. Fluids 1996;8; 872–880.

    Article  Google Scholar 

  8. Haj-Hariri H, Shi Q, Borhan A.: Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 1997;9; 845–855.

    Article  Google Scholar 

  9. Harlow FH, Welch JE:. Numerical calculations of time dependent viscous compressible flow of fluid with free surfaces. Phys. Fluids 1965;8; 2182–2189.

    Article  Google Scholar 

  10. Hirt CW, Nichols BD.: Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comp. Phys. 1981;39; 201–225.

    Article  MATH  Google Scholar 

  11. Unverdi OS, Tryggvason G:. A front tracking method for viscous incompressible flows. J. Comp. Phys. 1992;100; 25–37.

    Article  MATH  Google Scholar 

  12. Baker GR, Moore DW:. The rise and distortion of a two-dimensional gas bubble in an inviscid liquid. Phys. Fluids A, 1989;1; 1451–1459.

    Article  MATH  MathSciNet  Google Scholar 

  13. Scardovelli R, Zaleski S.: Direct numerical simulation of free surface and interfacial flow. Ann. Rev. Fluid Mech., 1999;31; 567–603.

    Article  MathSciNet  Google Scholar 

  14. Brackbill JU, Kothe DB, Zemach C.: A continuous method for modeling surface tension. J. Comp. Phys, 1992;100; 335–354.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bell JB, Marcus DL.: A second order Projection method for variable density flows. J. Comp. Phys, 1992;101; 334–348.

    Article  MATH  Google Scholar 

  16. Chorin AJ:. Numerical solutions of the Navier Stokes equations. Math. Comp. 1968;23; 341–354.

    Article  MathSciNet  Google Scholar 

  17. Temam R.: Sur l’ approximasion de la solution de l’ equations de Navier-Stokes par la méthode des pas fractionnaire. Arch. Rational Mech. Anal., (I) 1969;32; 135–53, (II) 1969;33; 377–385.

    MATH  MathSciNet  Google Scholar 

  18. Osher S, Sethian J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comp. Phys. 1988;79; 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  19. Sussman M, Smereka P, Osher S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comp. Phys. 1994;114; 146–159.

    Article  MATH  Google Scholar 

  20. Tryggvason G, Juric D, Che J, Nobari MRH, Nas S.: Computations of Multiphase Flows by a Finite Difference/Front Tracking Method. III Variable Surface Tension and Phase Change, 29th Computational Fluid Dynamics. Lecture Series 1998-03. Von Karman Institute for Fluid Dynamics.

  21. Brackbill JU, Juric D, Torres D, Kallman E.: Dynamic modeling of microgravity flow, Proceedings of the 1998 Fourth Microgravity Fluids Physics and Transport Phenomena Conference, 12–14 August 1998, Cleveland, Ohio, USA.

  22. Esmaeeli A, Arpaci V.: Numerical modeling of three-dimensional fluid flow with phase change, Proceedings of the 1998 Fourth Microgravity Fluids Physics and Transport Phenomena Conference, 12–14 August 1998, Cleveland, Ohio, USA.

  23. Bassano E.: Welcome Experiment Support Activities, WP200: Numerical Simulations. MARS Report Welcome/FR-001, 2000.

  24. Bassano E, Castagnolo D, Albano F:. Thermocapillary two-phase flow of a binary mixture drop exhibiting a miscibility gap. IAF-01-J.4.09, 52-th IAF congress, 1–5 Oct. 2001, Tolouse, France.

  25. Bassano E.: Numerical simulation of thermo-solutal capillary migration of a dissolving drop in a cavity. Submitted to Int. J. for Num. Methods in Fluids. 2002.

  26. Sethian JA.: Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.

  27. Shu CW:. High order ENO and WENO schemes for computational fluid dynamics. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Quarteroni A ed., Lecture Notes in Mathematics,1697, Springer, 1998.

  28. Osher S, Shu CW.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Num. Anal. 1991;28; 907–922.

    Article  MATH  MathSciNet  Google Scholar 

  29. Jiang G-S, Peng D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 2000;21; 2126–2143.

    Article  MATH  MathSciNet  Google Scholar 

  30. Peng D, Merriman B, Osher S, Zhao H, Kang M.: A PDE-Based fast local level set method. J. Comp. Phys. 1999;155; 410–438.

    Article  MATH  MathSciNet  Google Scholar 

  31. Jiang G-S, Shu CW.: Efficient implementation of weighted ENO schemes. J. Comp. Phys. 1996;126; 202–228.

    Article  MATH  MathSciNet  Google Scholar 

  32. Gottlieb S, Shu CW.: Total variation diminishing Runge-Kutta schemes. Math. Comp. 1998;67; 73–85.

    Article  MATH  MathSciNet  Google Scholar 

  33. Harten A.: ENO schemes with subcell resolution. J. Comp. Phys. 1989;83; 148–184.

    Article  MATH  MathSciNet  Google Scholar 

  34. Almgren AS, Bell JB, Colella P, Marthaler T.: A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries. SIAM J. Sci. Comput. 1997;18; 1289–1309.

    Article  MATH  MathSciNet  Google Scholar 

  35. Papazian JM, WIlcox WR.: Interaction of Bubbles with Solidification Interfaces. AIAA J 1978;16; 447–451.

    Article  Google Scholar 

  36. Neuhaus D, Feuerbacher B.: Bubble motions induced by a temperature gradient. Proceedings of the 6th European Symposium on Material Sciences under Microgravity Conditions, Bordeaux, France, December 2–5, 1986, ESA SP 256, 241–244.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassano, E., Castagnolo, D. Marangoni migration of a methanol drop in cyclohexane matrix in a closed cavity. Microgravity Sci. Technol 14, 20–33 (2003). https://doi.org/10.1007/BF02873333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02873333

Keywords

Navigation