Skip to main content
Log in

Physiological status of submergedClaviceps during enzymic assembly of ergot alkaloids

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Ergot alkaloids are formed only for arelatively brief time during the lifespan of the culture and under conditions of reduced proliferation. They cannot be taken for waste products of general metabolism. Ergot strains are capable of carrying out all the simple steps of the anthranilic acid—tryptophan cycles. Alkaloids influence activities of certain enzymes of primary metabolism in the ergot mycelium,e.g. tryptophan synthetase, acetyl-CoA carboxylase, citrate synthase, isocitrate lyase, and malate synthase. Ergot alkaloids do not belong to a group of physiologically inert secondary metabolites. A tentative scheme of the enzymic assembly of the ergoline nucleus is presented. The increased yield of ergoline alkaloids may be attributed to the following points: (1) Unbalnced growth of the culture. (2) Support of competition of fatty acids and alkaloid biosynthesis for acetyl-CoA. (3) Decreased activities of tricarboxylic acid and glyoxylate cycles. (4) Positive association between the rate of protein turnover and alkaloid formation. (5) Stimulation of both tryptophan synthesis and degradation via kynurenine—anthranilate. (6) Regulation of tryptophan-histidine cross-pathway. (7) Continuous control of the alkaloid level during fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M., Yamano T., Kozu Y., Kusamoto M.: Ergot fungus. 20. Isolation of mutant which produces good yields of agroclavine even in submerged culture.J. Agr. Chem. Soc. (Japan)27, 18 (1953).

    CAS  Google Scholar 

  • Birch A. J., McLoughlin B. J., Smith H.: The biosynthesis of the ergot alkaloids.Tetrahedron Letters7, 1 (1960).

    Article  Google Scholar 

  • Bu’Lock J. D.: Aspect of secondary metabolism in fungi p. 61, in Z. Vaněk, Z. Hoštálek (Eds.):Biogenesis of Antibiotic Substances, Academic Press, New York, and Academy of Sciences, Prague 1965.

    Google Scholar 

  • Bu’Lock J. D., Barr J. G.: A regulation mechanism linking tryptophan uptake and synthesis with ergot alkaloid synthesis inClaviceps.Lloydia31, 342 (1968).

    CAS  Google Scholar 

  • Bu’Lock J. D., Powell A. J.: Secondary metabolism: An explanation in terms of induced enzyme metabolism.Experientia21, 55 (1965).

    Article  CAS  Google Scholar 

  • Chechang H., Seidman I., Teebor G., Lane D.: Liver acetyl-CoA carboxylase and fatty acid synthetase: Relative activities in the normal state and in hereditary obesity.Biochem. Biophys. Res. Commun.28, 682 (1967).

    Article  Google Scholar 

  • Cohen G., Jacob F.: Sur la répression de la synthése des enzymes intervenant dans la formation du tryptophane chezEscherichia coli.Compt. Rend. Acad. Sci.248, 3490 (1959).

    CAS  Google Scholar 

  • Ebihara Y., Niitsu H., Terui G.: Fermentative production of tryptophan from indole byHansenula anomala.J. Ferm. Technol.47, 733 (1969).

    CAS  Google Scholar 

  • Floss H. G., Mothes U.: Über den Einfluss von Tryptophan und analogen Verbindungen auf die Biosynthese von Clavinalkaloiden in saprophytischer Kultur.Arch. Mikrobiol.48, 213 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Gjerstad G.: Intermediary metabolism of ergot. I. Amino acid metabolism.J. Am. Pharm. Ass.48, 443 (1959).

    Article  CAS  Google Scholar 

  • Gröger D.: Zur Kenntnis der Alkaloidbildung des Mutterkornpilzes in Submerskulturen.Pharmazie15, 715 (1960).

    Google Scholar 

  • Gröger D., Erge D.: Über die Bildung von Lysergsäurederivaten in Submerskultur vonClaviceps paspali.Pharmazie19, 775 (1964).

    Google Scholar 

  • Gröger D., Mothes K., Simon H., Floss H. G., Weygand F.: Über den Tryptophan-Stoffwechsell des Mutterkornpilzes.Z. Naturforsch.16b; 432 (1961).

    Google Scholar 

  • Hilton J.: Modes of action of 3-amino 1,2, 4-triazole. Current status (In:Isotopes in Weed Research. Int. Atomic Energy Agency, Vienna, 1966, p. 71).

    Google Scholar 

  • Horowitz N. M.: Evidence of common control of tyrosinase and L-amino acid oxidase inNeurospora.Biochem. Biophys. Res. Commun.18, 686 (1965).

    Article  CAS  Google Scholar 

  • Hütter R.: Regulation of amino acid biosynthesis and industrial production of amino acids. IAE/SM-134/31, Vienna 1971.

  • Jensen R. A.: Metabolic interlock. Regulatory interactions exerted between biochemical pathways.J. Biol. Chem.244, 2816 (1969).

    PubMed  CAS  Google Scholar 

  • Kaplan H., Hornemann U., Kelley K. M., Floss, H. G.: Tryptophan metabolism, protein and alkaloid synthesis in saprophytic cultures of the ergot fungus (Claviceps sp.).Lloydia32, 489 (1969).

    PubMed  CAS  Google Scholar 

  • Kovach J. S., Berberich M. A., Venetianer P., Goldberger R. F.: Repression of the histidine operon: Effect of the first enzyme on the kinetics of repression.J. Bacteriol.97, 1283, 1969.

    PubMed  CAS  Google Scholar 

  • Marshall R., Redfield B., Katz E., Weissbach H.: Changes in phenoxazinone synthetase activity during the growth cycle ofStreptomyces antibioticus.Arch. Biochem. Biophys.123, 317 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Miraga S.: Operon mutants of the tryptophan operon inEscherichia coli.J. Mol. Biol.39, 159 (1968).

    Google Scholar 

  • Morse D. E., Yanofsky C.: The internal low-efficiency promoter of the tryptophan operon ofEscherichia coli.J. Mol. Biol.38, 447 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Morse D. E., Yanofsky C.: Amber mutants of the tryptophan regulatory gene.J. Mol. Biol.44, 185 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Mothes K.: Biogenesis of alkaloids and the problem of chemotaxonomy.Lloydia29, 156 (1966).

    CAS  Google Scholar 

  • Mueller M., Hogg J. F., de Duve C.: Distribution of tricarboxylic acid cycle enzymes and glyoxylate cycle enzymes between mitochondria and peroxisomes inTetrahymena pyriformis.J. Biol. Chem.243, 5385 (1968).

    Google Scholar 

  • Ogunlana E. O., Ramstad E., Tyler V. E.: Effects of some substances on ergot alkaloid production.J. Pharm. Sci.58, 143 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Ogunlana E. O., Wilson B. J., Tyler V. E., Ramstad E.: Biosynthesis of ergot alkaloids. Enzymatic closure of ring D of the ergolene nucleus.Chem. Commun. 775 (1970).

  • Řeháček Z.: Discerning between microorganisms in examination for novelty: Need of generally accepted scientific criteria, p. 423 in Z. Vaněk, Z. Hoštálek, J. Cudlín, (Eds.):Genetics of Industrial Microorganisms, Bacteria, Elsevier, Amsterdam 1972.

    Google Scholar 

  • Řeháček Z., Basappa S. C.: Effect of Tween 80 on alkaloid production cultures ofClaviceps paspali.Folia Microbiol.16, 110 (1971).

    Google Scholar 

  • Řeháček Z., Malik K. A.: Cell-pool tryptophan phases in ergot alkaloid fermentation.Folia Microbiol.16, 359 (1971).

    Article  Google Scholar 

  • Řeháček Z., Kozová J., Řičicová A., Kašlík J., Sajdl P., Švarc S., Basappa S. C.: Role of endogenous tryptophan during submerged fermentation of ergot alkaloids.Folia Microbiol.16, 35 (1971a).

    Article  Google Scholar 

  • Řeháček Z., Sajdl P., Kozová J., Malik K. A., Řičicová A.: Correlation of certain alterations in metabolic activity with production of alkaloids by submergedClaviceps cultures.Appl. Microbiol.22, 949 (1971b).

    PubMed  Google Scholar 

  • Řeháček Z., Kozová J., Sajdl P., Kašlík J.: Ergot alkaloid formation in relation to the cell-pool tryptophan and adenosine-5′-triphosphate, p. 427 in Z. Vaněk, Z. Hoštálek, J. Cudlín (Eds.):Genetics of Industrial Microorganisms, Actinomycetes and Fungi, Elsevier, Amsterdam 1972a.

    Google Scholar 

  • Řeháček Z., Sajdl P., Kozová J., Řičicová A.: Physiological activities of ergoline alkaloids in submerged cultures ofClaviceps paspali andC. purpurea.Folia Microbiol.17, (1972b).

  • Sommerville R. L., Yanofsky C.: Studies on the regulation of tryptophan biosynthesis inEscherichia coli.J. Mol. Biol.11, 747 (1965).

    Google Scholar 

  • Stadtman E. R.: Allosteric regulation of enzyme activity.Adv. Enzymol.28, 41 (1966).

    PubMed  CAS  Google Scholar 

  • Taber W. A.: Ergot alkaloid production and physiology ofClaviceps purpurea. In development in industrial microbiology.Amer. Inst. Biol. Sci.4, 295 (1963).

    CAS  Google Scholar 

  • Taber W. A.: Sequential formation and accumulation of primary and secondary shunt metabolic products inClaviceps purpurea.Appl. Microbiol.12, 321 (1964).

    PubMed  CAS  Google Scholar 

  • Taber W. A.: Fermentative production of hallucinogenic indole compounds.Lloydia30, 39 (1967).

    CAS  Google Scholar 

  • Taber W. A., Vining L. C.: Physiology of alkaloid production byClaviceps purpurea (Fr) Tul. Correlation with changes in mycelial polyol, carbohydrate, lipid and phosphorus-containing compounds.Can. J. Microbiol.9, 1 (1963).

    CAS  Google Scholar 

  • Teuscher E.: Über die Zusammenhänge zwischen aktiver Aufnahme von Tryptophan und Alkaloid-biogenese beiClaviceps purpurea (Fries) Tulasne.Flora155, 80 (1964).

    CAS  Google Scholar 

  • Teuscher E.: Tryptophanstoffwechsel und Alkaloidbildung beim Mutterkornstamm SD 58 in saprophytischer Submerskultur. L. Mitteilung. Der Tryptophanstoffwechsel des Mutterkornstammes SD 58.Pharmazie20, 778 (1965).

    PubMed  CAS  Google Scholar 

  • Vining L. C.: Physiological aspects of alkaloid production byClaviceps species. Int. Symp.Genetics of Industrial Microorg., Prague 1970a, Abstr. p.144.

  • Vining L. C.: Effect of tryptophan on alkaloid biosynthesis in cultures of aClaviceps species.Can. J. Microbiol.16, 473 (1970b).

    Article  PubMed  CAS  Google Scholar 

  • Voigt R., Bornschein M.: Zur Aktivität der alkaloidbildenden Fermente vonClaviceps purpurea Tul.Pharmazie21, 380 (1966).

    PubMed  CAS  Google Scholar 

  • Voigt R., Wichmann D.: Zum Alkaloidstoffwechsel des Roggenmutterkorns in saprophytischer Kultur.Pharmazie16, 35 (1961).

    PubMed  CAS  Google Scholar 

  • Weinberg E. D.: Biosynthesis of secondary metabolites: Roles of trace metals.Adv. Microbiol. Physiol.4, 1 (1970).

    CAS  Google Scholar 

  • Wiley W. R., Matchett W. H.: Tryptophan transport inNeurospora crassa. II. Metabolic control.J. Bacteriol.95, 959 (1968).

    PubMed  CAS  Google Scholar 

  • Woodruff H. B.: The physiology of antibiotic production: The role of producing organism, p. 22, In B. A. Newton P. E. Reynolds (Eds.):Biochemical Studies of Antimicrobial Drugs, Cambridge Univ. Press, London 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řeháček, Z., Malik, K.A. Physiological status of submergedClaviceps during enzymic assembly of ergot alkaloids. Folia Microbiol 17, 490–499 (1972). https://doi.org/10.1007/BF02872734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872734

Keywords

Navigation