Skip to main content
Log in

Mechanism of thermal death of bacterial spores: Electron-microscopic observations

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Electron-microscopic cytological observations ofBacillus stearothermophilus (FS 7954) spore death during moist heat exposure partially elucidated the physical behaviour of cells predicted by a previously suggested kinetic model of death. This model consisted of two consecutive reaction states prior to death and accounted for the nonlogarithmic behaviour. Morphology of spores during the early heat exposure, where the majority of spores are still viable, remain unchanged from the initial state. Some changes were recognized in the spore laminated inner-coat layer. There are indications that this layer consists of keratin fibrils. These fibrils contract upon heating. It is believed that this contraction causes, either directly or indirectly, some water to be expelled from the spore protoplast. This belief is supported by previous observation of a minimum in the free deuterium oxide content of the spore given similar heat exposure. It is suggested that this contraction is the reason for enhanced thermal resistance during the nonlogarthmic death process. On prolonged heating the integrity of the spore coat integuments and protoplast envelopes become lost. This is concomitant with the death of spores and onset of increase in free deuterium oxide content. These cytological observations, together with changes in free water content and the kinetic behaviour of the sequential model for the death process, are discussed from the viewpoint of cellular membrane stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlin E., Curran H. R., Pallansch M. M.: Physical surface features and chemical density of dry bacterial spores.J. Bacteriol.86, 1030 (1963).

    PubMed  CAS  Google Scholar 

  • Black S. H., Arredondo M. I.: Evidence for an intracellular membrane in core of spores ofBacillus popilliae.Experientia22, 77 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Bradley D. E., Franklin J. G.: Electron microscope survey of the surface configuration of spores of the genusBacillus.J. Bacteriol.76, 618 (1958).

    PubMed  CAS  Google Scholar 

  • Brannen J. P.: On the role of DNA in wet heat sterilization of microorganisms.J. Theoret. Biol.27, 425 (1970).

    Article  CAS  Google Scholar 

  • Brock T. D.: Life at high temperature.Science158, 1012 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Crewther W. G., Fraser D. R. B., Leunox H. F., Lindley H. F.: The chemistry of keratins.Adv. Protein Chemistry20, 191 (1965).

    Article  CAS  Google Scholar 

  • Deindoerfer F. H., Humphrey A. E.: Analytical methods for calculating heat sterilization times.Appl. Microbiol.7, 256 (1958).

    Google Scholar 

  • Finean J. B.: The fibrous proteins, p. 117, InEngstrom-Finean Biological Ultrastructure, 2nd ed. Academic Press 1967.

  • Fox K., Eder B.: Comparison of survival curves ofBacillus subtilis spores subjected to wet and dry heat.J. Food Sci.34, 518 (1969).

    Article  Google Scholar 

  • Frasca J. M., Parks V. R.: A routine technique for double-staining ultrathin sections using uranyl and lead salts.J. Cell Biol.25, 157 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Frederickson A. G.: Stochastic models for sterilization.Biotechnol. Bioeng.8, 167 (1966).

    Article  Google Scholar 

  • Freer J. H., Levinson H. S.: Fine structure ofBacillus megaterium during microcycle sporogenesis.J. Bacteriol.94, 441 (1967).

    PubMed  CAS  Google Scholar 

  • Gerhardt P., Black S. H.: Permeability of bacterial spores, p. 218, in H. O. Halvorson (Ed.):Spores II, Burgess Publ. Co., Minn., USA, (1960).

    Google Scholar 

  • Glanert A. M., Glanert R. H.: Araldide as an embedding medium for electron microscopy.J. Biophys. Biochem. Cytol.4, 191 (1958).

    Google Scholar 

  • Hibagi Y., Iijima K., Kadota H.: Splitting line of bacterial spore.Nature215, 1392 (1967).

    Article  Google Scholar 

  • Hunnel J. W., Ordall Z. J.: Cytological and chemical changes in heat killed and germinated bacterial spores, p. 101, in H. O. Halvorson (Ed.):Spores II, Burgess Publ. Co., Minn., USA, 1960.

    Google Scholar 

  • Kadota H., Iijima K., Uchida A.: The presence of keratinlike substance in spore coat ofBacillus subtilis.Agric. Biol. Chem.29, 870 (1965).

    CAS  Google Scholar 

  • Kellenberger E., Ryter A., Séchaud J.: Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states.J. Biophys. Biochem. Cytol.4, 671 (1958).

    PubMed  CAS  Google Scholar 

  • Keynan A., Issahary-Braud G., Evenchik Z.: Activation of bacterial spores, p. 180, in L. L. Campbell, H. O. Halvorson (Eds.):Spores III, American Society for Microbiology (1965).

  • Lewis J. C., Snell N. S., Burr H. K.: Water permeability of bacterial spores and the concepts of a contractile cortex.Science132, 544 (1960).

    Article  PubMed  Google Scholar 

  • Murrell W. G.: The biochemistry of the bacterial endospore.Adv. Microbial. Physiol.1, 133 (1967).

    CAS  Google Scholar 

  • Ohye D. F., Murrell W. G.: Formation and structure of the spore ofBacillus coagulans.J. Cell Biol.14, 111 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Prokop A., Humphrey A. E.: Kinetics of disinfection, p.61, in M. A. Benarde (Ed.):Disinfection, Marcell Dekker Inc., New York (1970).

    Google Scholar 

  • Reynolds E.S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.J. Cell Biol.17, 208 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Rosemberg B., Remeny G., Switser R. C., Hamilton T. C.: Quantitative evidence for protein denaturation as the cause of thermal death.Nature232, 472 (1971).

    Google Scholar 

  • Rousseau M., Fléchon J., Hermier J.: Etude an microscope électronique de la germination de la spore chezBacillus subtilis.Ann. Inst. Pasteur111, 149 (1966).

    CAS  Google Scholar 

  • Sacks L. E., Thomas R. S.: Internal membraneous structure inBacillus macerans spores.S. Bacteriol.89, 1615 (1965).

    CAS  Google Scholar 

  • Scharer J. M.:Ph. D. Thesis, University of Pennsylvania, USA (1965).

  • Stern J. A., Proctor B. E.: A micromethod and apparatus for the multiple determination of rates of destruction of bacteria and bacterial spores subjected to heat.Food Technol.7, 138 (1954).

    Google Scholar 

  • Thomas R. S.: Ultrastructural localization of mineral matter in bacterial spores by microincineration.J. Cell. Biol.23, 113 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu K., Yamada E.: Fine structure ofBacillus subtilis II. Sporulation progress.J. Biophys. Biochem. Cytol.5, 129 (1959).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokop, A., Humphrey, A.E. Mechanism of thermal death of bacterial spores: Electron-microscopic observations. Folia Microbiol 17, 437–445 (1972). https://doi.org/10.1007/BF02872728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872728

Keywords

Navigation