Skip to main content
Log in

Regulation of biosynthesis of secondary metabolites

IV. Purification and properties of phosphoenolpyruvate carboxylase inStreptomyces aureofaciens

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The activity of PEP carboxylase (E.C.4.1.1.31) was demonstrated in cell free extracts ofStreptomyces aureofacines. The enzyme was purified 610 fold. AcetylCoA increased the affinity of the purified enzyme for substrate approximately tenfold and doubled the specific activity of the enzyme preparation. Inorganic phosphate was not essential for the reaction; on the contrary, it had an inhibitory effect. Essential cofactors were divalent cations, the most potent of which was Mn2+. The kinetic characters of the purified enzyme were similar to figures for PEP carboxylase from other sources. The substrate saturation function replotted according to the Hill equation showed the extent of intramolecular interactions, reflecting the allosteric nature of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandurski, R. S., Greiner, C. M.:The enzymatic synthesis of oxalacetate from phosphoryl-enol-pyruvate and carbon dioxide. J. biol. Chem. 204: 781 1953.

    PubMed  CAS  Google Scholar 

  • Bloom, S. J., Johnson, M. J:The pyruvate carbo-xylase of Aspergillus niger. J. biol. Chem. 273: 2718, 1962.

    Google Scholar 

  • Canovas, J. L., Kornberg, H. L.:Fine control of phosphopyruvate carboxylase activity in Escherichia coli. Biochim. biophys. Acta 96: 169, 1965.

    PubMed  CAS  Google Scholar 

  • Canovas, J. L., Kornberg, H. L.:Properties and regulation of phosphopyruvate carboxylase activity in Escherichia coli. Proc. roy. Soc. B, 165: 189, 1966.

    CAS  Google Scholar 

  • Changeux, J. P.: Cold Spring Harbor Symposium on Quantitative Biology 28, p. 497, Biological Laboratory New York 1963.

    Google Scholar 

  • Collowick S. P., Kaplan, N. O.:Methods in Enzymology II, p. 453., Academic Press New York 1957.

    Google Scholar 

  • Cooper, T. G., Benedict, C. R:The participation of acetyl-CoA in pyruvate carboxylase. Biochem. biophys. Res. Commun. 22: 285, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M., Webb, E. C.:Enzymes, p. 63, Longmans London 1964.

    Google Scholar 

  • Fuller, R. C., Kornberg, H. L:A possible route for malate oxidation by Chromatium. Biochem. J. 79: 8P, 1961.

  • Henning, H. V., Seubert, W.:Zum Mechanismus der Gluconeogenese und ihre Steuerung. I. Quantitative Bestimmung der Pyruvatcarboxylase in Rohextrakten der Rattenleber. Biochem. Z. 340: 160, 1964.

    PubMed  CAS  Google Scholar 

  • Hoš′álek, Z., Tintěrová, M., Blumauerová, M., Jechová, V., Suchý, J., Vaněk, Z.:Regulation of biosynthesis of secondary metabolites. I. Biosynthesis of chlortetracycline and activity of tricarboxylic acid cycle. Biochim. biophys. Acta 1969.

  • Keil, B., Šormová, Z.:Laboratory technique of biochemistry p. 491 CSAV, Praha 1959.

    Google Scholar 

  • Maeba, P., Sanwal, B. D.:Feedback inhibition of phosphoenolpyruvate carboxylase of Salmonella. Biochem. biophys. Res. Commun. 21: 503, 1965.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, H., Lane, M. D:Purification and properties of phosphoenolpyruvate carboxylase from the germinating peanut cotyledon. Biochim. biophysthe germinating peanut cotyledon. Biochim. biophys. Acta, 65: 207, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, H., Easterday, R. L., Chang, H., Lane, M. D.:The enzymatic carboxylation of phosphoenolpyruvate. J biol. Chem. 241: 2405, 1966.

    PubMed  CAS  Google Scholar 

  • Sakami, W.:Handbook of isotope tracer method, p.83 Western Reserve University, Cleveland, Ohio 1955.

    Google Scholar 

  • Sanwal, B. D., Maeba, P:Phosphoenolpyruvate carboxylase: Activation by nucleotides as a possible compensatory feedback effect. J. biol. Chem. 241: 4557, 1966.

    PubMed  CAS  Google Scholar 

  • Seubert, B. D., Remberger, Y.:Reinigung und Wirkungsweise der Pyruvatcarboxylase aus Pseudomonas citronellolis. Biochem. Z. 334: 401, 1961.

    PubMed  CAS  Google Scholar 

  • Tchen, T. T., Vennesland, B:Enzymatic carbon dioxide fixation into oxalacetate in wheat germ. J. biol. Chem. 213: 533, 1955.

    PubMed  CAS  Google Scholar 

  • Utter, M. F., Keech, D. B:Formation of oxaloacetate from pyruvate and CO 2. J. biol. Chem. 235: 17PC, 1960.

    Google Scholar 

  • Utter, M. F., Keech, D. B:Pyruvate carboxylase. I. Nature of the reaction. J. biol. Chem. 238: 2603, 1963.

    PubMed  CAS  Google Scholar 

  • Utter, M. F., Keech, D. B., Scrutton, M. C:A possible role for acetyl CoA in the control of gluconeogenesis. Adv. Enzymol. Regulation II, p.49, Pergamon Press 1964.

    Article  Google Scholar 

  • de Vellis, J., Shannon, L. M., Lew, J. Y.:Malonic acid biosynthesis in bush bean roots. I. Evidence for oxaloacetaie as immediate precursor Plant. Physiol. 38: 687, 1963.

    Google Scholar 

  • Walker, D. A:Physiological studies on acid metabolism. 4. Phosphenolpyruvic carboxylase activity in extracts of crassulacean plants. Biochem. J. 67: 73, 1957.

    PubMed  CAS  Google Scholar 

  • Wyman, J:Heme proteins. Adv. Protein Chem. 4: 407 1948.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Academician Ivan Málek on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voříšek, J., Powell, A.J. & Vaněk, Z. Regulation of biosynthesis of secondary metabolites. Folia Microbiol 14, 398–405 (1969). https://doi.org/10.1007/BF02872709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872709

Keywords

Navigation