Relaxation dominated by inertia: Solvation dynamics of a small ion in a dipolar solvent

  • A Chandra
  • B Bagchi
Rapid Communication
  • 7 Downloads

Abstract

It is shown from an analytical theory that the solvation dynamics of a small ion can be controlled largely by the inertial response of the dipolar solvent when the liquid is in the underdamped limit. It is also shown that this inertial response arises primarily from the long wavelength (with wavevector k≃0) processes which have a collective excitation-like behaviour. The long time decay is dominated by the processes occurring at molecular lengthscales. The theoretical results are in good agreement with recent computer simulation results.

Keywords

Relaxation inertia solvation dynamics of small ions dipolar solvent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagchi B 1989Annu. Rev. Phys. Chem. 40 115CrossRefGoogle Scholar
  2. Bagchi B and Chandra A 1988Proc. Indian Acad. Sci. (Chem. Sci.) 100 353Google Scholar
  3. Bagchi B and Chandra A 1989aChem. Phys. Lett. 155 533CrossRefGoogle Scholar
  4. Bagchi B and Chandra A 1989bJ. Chem. Phys. 90 7338CrossRefGoogle Scholar
  5. Bagchi B and Chandra A 1991Adv. Chem. Phys. 80 1CrossRefGoogle Scholar
  6. Bagchi B, Oxtoby D W and Fleming G R 1984Chem. Phys. 86 257CrossRefGoogle Scholar
  7. Barbara P F and Jarzeba W 1988Acc. Chem. Rev. 21 195CrossRefGoogle Scholar
  8. Barbara P F and Jarzeba W 1990Adv. Photochem. 15 1CrossRefGoogle Scholar
  9. Chandra A 1990Theoretical studies on collective orientational relaxation, solvation dynamics and electron transfer reactions in dense dipolar liquids, PhD thesis, Indian Institute of Science, BangaloreGoogle Scholar
  10. Chandra A and Bagchi B 1988Chem. Phys. Lett. 151 47CrossRefGoogle Scholar
  11. Chandra A and Bagchi B 1989aJ. Phys. Chem. 93 6996CrossRefGoogle Scholar
  12. Chandra A and Bagchi B 1989bJ. Chem. Phys. 91 2594CrossRefGoogle Scholar
  13. Chandra A and Bagchi B 1990aJ. Phys. Chem. 94 3152CrossRefGoogle Scholar
  14. Chandra A and Bagchi B 1990bJ. Chem. Phys. 92 6833CrossRefGoogle Scholar
  15. Chandra A and Bagchi B 1991aJ. Chem. Phys. (in press)Google Scholar
  16. Chandra A and Bagchi B 1991bJ. Chem. Phys. (in press)Google Scholar
  17. Calef D F and Wolynes P G 1983J. Chem. Phys. 78 4145CrossRefGoogle Scholar
  18. Fleming G R and Wolynes P G 1990Phys. Today (May) 36CrossRefGoogle Scholar
  19. Fried I E and Mukamel S 1990J. Chem. Phys. 93 932CrossRefGoogle Scholar
  20. Friedrich V and Kivelson D 1987J. Chem. Phys. 86 6425CrossRefGoogle Scholar
  21. Grey C G and Gubbins K E 1984Theory of molecular fluids (Oxford: Clarendon) vol. 1Google Scholar
  22. Karim O, Haymet A D J, Banet M J and Simon J D 1988J. Phys. Chem. 92 3391CrossRefGoogle Scholar
  23. Loring R F and Mukamel S 1987J. Chem. Phys. 87 1272CrossRefGoogle Scholar
  24. Maroncelli M 1991J. Chem. Phys. (in press)Google Scholar
  25. Maroncelli M and Fleming G R 1988J. Chem. Phys. 89 5044CrossRefGoogle Scholar
  26. Maroncelli M, McInnis J and Fleming G R 1989Science 243 1674CrossRefGoogle Scholar
  27. Nichols A III and Calef D F 1988J. Chem. Phys. 89 3783CrossRefGoogle Scholar
  28. Raineri F, Zhou Y, Friedman H L and Stell G 1991Chem. Phys. (in press)Google Scholar
  29. Simon J D 1988Aco. Chem. Res. 21 128CrossRefGoogle Scholar
  30. van der Zwan G and Hynes J T 1985J. Phys. Chem. 89 4181CrossRefGoogle Scholar
  31. Wei D and Patey G N 1990J. Chem. Phys. 93 1399CrossRefGoogle Scholar
  32. Wolynes P G 1987J. Chem. Phys. 86 5133CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1991

Authors and Affiliations

  • A Chandra
    • 1
  • B Bagchi
    • 1
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations