Skip to main content
Log in

The effects of gaseous environments on the growth and metabolism of fungi

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  • Adams, A. M. 1949. A convenient method of obtaining ascospores from baker’s yeast. Can. Jour. Res. C27: 179–189.

    Google Scholar 

  • —————. 1954. Effect of gaseous environment and temperature on ascospore formation inSaccharomyces cerevisiae Hansen. Can. Jour. Bot.32: 320–334.

    CAS  Google Scholar 

  • Adams, J., &E. H. Parfitt. 1939. Some factors influencing the amount of mold mycelia in butter. Jour. Dairy Sci.22(5): 367–374.

    CAS  Google Scholar 

  • Ainsworth, G. C., &A. S. Sussman. 1966a. The Fungi. Vol. I. Academic Press, New York and London, xvi + 748 pp.

    Google Scholar 

  • —————, & —————. 1966b. The Fungi. Vol. II. Academic Press, New York and London, xvi + 805 pp.

    Google Scholar 

  • Ajl, S. J., &C. H. Werkman. 1948. Enzymic fixation of carbon dioxide in α-ketoglutaric acid. Proc. Natl. Acad. Sci. U. S.34: 491–498.

    Article  CAS  Google Scholar 

  • Allen, P. J. 1955. The role of a self-inhibitor in the germination of rust uredospores. Phytopathology45(5): 259–266.

    CAS  Google Scholar 

  • Allison, F. E., S. R. Hoover, &H. J. Morris. 1934. Nitrogen fixation studies with fungi and actinomycetes. Jour. Agr. Res.49: 1115–1123.

    CAS  Google Scholar 

  • Allyn, W. P., &I. L. Baldwin. 1930. The effect of the oxidation-reduction character of the medium on the growth of an aerobic form of bacteria. Jour. Bact.20: 417–438.

    CAS  Google Scholar 

  • —————, & —————. 1932. Oxidation-reduction potentials to the growth of an aerobic form of bacteria. Jour. Bact.23: 369–398.

    CAS  Google Scholar 

  • Andreasen, A. A., &J. B. Stier. 1953. Anaerobic nutrition ofSaccharomyces cerevisiae. Jour. Cell. & Comp. Physiol.41: 23–36.

    Article  CAS  Google Scholar 

  • —————, & —————. 1954. Anaerobic nutrition ofSaccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. Jour. Cell. & Comp. Physiol.43: 271–281.

    Article  CAS  Google Scholar 

  • —————, & —————. 1956. Anaerobic nutrition ofSaccharomyces cerevisiae. III. An unidentified growth promoting factor and its relationship to the essential lipid requirements. Jour. Cell. & Comp. Physiol.48(2): 317–328.

    Article  CAS  Google Scholar 

  • Aristovskaya, T. V. 1944. Carbon dioxide and the life of heterotrophic microorganisms. Advances in Modern Biol. (USSR)17(1): 54–70.

    CAS  Google Scholar 

  • Badaner, B. B. 1931. Nitrogen fixation and the production of oxalic acid in dental caries byAspergillus niger. Dental Cosmos73: 780–785.

    Google Scholar 

  • Bailey, L. D. 1923. Sunflower rust. Minn. Univ. Agr. Exp. Sta., Tech. Bull.16: 1–31.

    Google Scholar 

  • Balabanoff, V. A., &I. B. Kasenow. 1963. Production of macroconidia ofTrichophyton megnini under the effect of CO2. Mycopath. & Mycol. Appl.19(4): 283–286.

    Article  CAS  Google Scholar 

  • Bandurski, R. S. 1955. Further studies on the enzymatic synthesis of oxalacetate from phosphorylenol pyruvate and carbon dioxide. Jour. Biol. Chem.217: 137–150.

    CAS  Google Scholar 

  • Bannerjee, S. N., &B. K. Bakshi. 1944. On the production of true pilei ofPolyporus brumalis (Pers.) Fr. in artificial culture. Current Sci.13: 102–104.

    Google Scholar 

  • Barinova, S. A. 1941. Formation of fumaric and succinic acids in cultures ofRhizopus nigricans. Mikrobiologiya10: 716–729.

    CAS  Google Scholar 

  • ————— 1953a. Influence of carbon dioxide on mold growth. Mikrobiologiya22: 391–398.

    CAS  Google Scholar 

  • ————— 1953b. Significance of carbon dioxide in the life processes of molds. I. Possibility of substituting organic acids for carbon dioxide. Mikrobiologiya22: 497–505.

    CAS  Google Scholar 

  • ————— 1954. Effects of carbon dioxide on respiration in molds. Mikrobiologiya23: 521–526.

    CAS  Google Scholar 

  • ————— 1958. Effects of carbon dioxide on reduction of methylene blue by molds. Mikrobiologiya27: 3–6.

    CAS  Google Scholar 

  • ————— 1960. Growth stimulation of molds by carbon dioxide and effect of mesotertanic acid on this process. Mikrobiologiya29(2): 125–126.

    Google Scholar 

  • ————— 1961. The importance of carbon dioxide to the vital activity of fungi. Izvest. Akad. Nauk SSSR, Ser. Biol.4: 561–572.

    Google Scholar 

  • ————— 1962. Carbon dioxide utilization and its role in the metabolism of mold fungi. Mikrobiologiya31: 7–17.

    Google Scholar 

  • ————— 1964. Carbon dioxide production inAspergillus niger. Mikrobiologiya33(3): 404–407.

    CAS  Google Scholar 

  • Barnett, H. L., &V. G. Lilly. 1955. The effects of humidity, temperature and carbon dioxide on sporulation ofChoanephora cucurbitarum. Mycologia47: 26–29.

    Article  Google Scholar 

  • Barnett, J. A., &H. L. Kornberg. 1960. The utilization by yeasts of acids of the tricarboxylic acid cycle. Jour. Gen. Microbiol.23: 65–82.

    CAS  Google Scholar 

  • Barron, E. S. G., &F. Ghiretti. 1953. Pathways of acetate oxidation. Biochim. & Biophys. Acta12: 239–249.

    Article  CAS  Google Scholar 

  • Barrows, F. L. 1941. Propagation ofEpigaea repens. II. Contrib. Boyce Thompson Inst.11: 431–448.

    Google Scholar 

  • Bartnicki-Garcia, S., &W. J. Nickerson. 1961. Thiamin and nicotinic acid; anaerobic growth factors forMucor rouxii. Jour. Bact.82: 142–148.

    CAS  Google Scholar 

  • —————, & —————. 1962a. Induction of yeast-like development inMucor by carbon dioxide. Jour. Bact.84: 829–840.

    CAS  Google Scholar 

  • —————, & —————. 1962b. Nutrition, growth and morphogenesis inMucor rouxii. Jour. Bact.84: 841–858.

    CAS  Google Scholar 

  • —————, & —————. 1962c. Assimilation of carbon dioxide and morphogenesis ofMucor rouxii. Biochim. & Biophys. Acta64: 548–551.

    Article  CAS  Google Scholar 

  • Bary, A. de. 1887. Comparative morphology and biology of the fungi, mycetozoa and bacteria. (English translation by E. F. Garnsey, revised by I. B. Balfour.) Clarendon Press, Oxford, xviii + 525 pp.

    Google Scholar 

  • Bavendamm, W. 1928. [Studies on the living conditions of wood-destroying fungi;— A contribution to the sensitiveness of our woody plants to disease.] Zentralbl. Bakt. II.75: 426–452, 503–533.

    CAS  Google Scholar 

  • Berghaus, W. H. 1907. Uber die Wirkung der Kohlensaure des Sauerstoffs und des Wasserstoffs auf Bakterien bei verschiedenen Druckhohen. Arch. Hyg.62: 172–200.

    CAS  Google Scholar 

  • Bergman, H. F. 1959. Oxygen deficiency as a cause of disease in plants. Bot. Rev.25: 417–485.

    Article  CAS  Google Scholar 

  • Bernhauer, K., &N. Böckl. 1932a. Chemistry of acid forming processes under the influence ofAspergillus niger. VII. Conversion of alcohol into citric acid. Biochem. Zeitschr.253: 16–24.

    CAS  Google Scholar 

  • —————, & —————. 1932b. Chemistry of acid forming processes under the influence ofAspergillus niger. VIII. Transformation of aconitic acid into citric acid and further data on the decomposition of acetic acid. Biochem. Zeitschr.253: 25–29.

    CAS  Google Scholar 

  • —————. 1928. Enzyme chemistry of the processes of acid formation byAspergillus niger. Zeitschr. Physiol. Chem.177: 270–279.

    CAS  Google Scholar 

  • Berthelot, M. 1893. Recherches nouvelles sur les microörganisms fixateurs de l’azote. Compt. Rend. Acad. Sci. (Paris)116: 842–849.

    Google Scholar 

  • Bettelheim, K. A., &J. A. Gay. 1963. Acetate-glyoxylate medium for the sporulation ofSaccharomyces cerevisiae. Jour. Appl. Bact.26: 224–231.

    CAS  Google Scholar 

  • Biejerinck, M. W. 1888. Die Bacterien der Papilionaceen-Knöllchen. Bot. Zeitung46: 725–735; 741–750, 757–771, 781–790, 797–804.

    Google Scholar 

  • Biggs, D. R., &A. W. Linnane. 1963. Effect of oxygen on the composition and organization of the electron transport system of yeast. Biochim. & Biophys. Acta78: 785–788.

    Article  CAS  Google Scholar 

  • Birkinshaw, J. H. 1937. Biochemistry of the lower fungi. Biol. Rev. Cambridge Philos. Soc.12: 357–392.

    Article  CAS  Google Scholar 

  • Bisby, G. R., M. I. Timonin, &N. James. 1935. Fungi isolated from soil profiles in Manitoba. Can. Jour. Res. C13: 47–65.

    Google Scholar 

  • Blackman, V. H. 1903. On the conditions of teleutospore germination and of sporidia formation in the Uredineae. New Phytol.2: 10–15.

    Article  Google Scholar 

  • Bolley, H. L., &E. J. Pritchard. 1906. Rust problems. Facts, observations and theories. Possible means of control. New Jersey Agr. Exp. Sta., Exp. Sta. Bull.68: 1–61.

    Google Scholar 

  • Bond, G., &G. D. Scott. 1955. An examination of some symbiotic systems for the fixation of nitrogen. Ann. Bot. (London) N.S.19: 67–77.

    Google Scholar 

  • Böning, K., F. Wagner, &A. Minckwitz. 1953. Untersuchungen zur Keimungsbiologie und Beizung der Sporen der Zwergbrandes an Weizen. Zeitschr. Pflanzenbau & Pflanzenschutz4: 49–71.

    Google Scholar 

  • Boutelje, J. B., &H. Kiessling. 1964. On water-stored timber and its decay by fungi and bacteria. Arkiv Mikrobiol.49: 305–314.

    Article  Google Scholar 

  • Brancato, F. P., &N. S. Golding. 1953. Gas requirements of molds: the importance of dissolved oxygen on the medium for germination and growth of several molds. Northw. Sci.27: 33–38.

    Google Scholar 

  • Brandt, K. M. 1944. Effect of CO2 and CO2 fixation in baker’s yeast. Nature153: 343–344.

    Article  CAS  Google Scholar 

  • Brefeld, O. 1900. Versuche über die Stickstoffeaufnahme bei den Pflanzen. Jahres-Bericht Schlesischen Ges. Vaterl. Cultur.78 (Abt. II): 27–38. (Zoologischbotanische Section.)

    Google Scholar 

  • Brewer, J. H. 1940. Clear liquid mediums for the “aerobic” cultivation of anaerobes. Jour. Amer. Med. Assoc.115: 598–600.

    Google Scholar 

  • Brierley, W. B., S. T. Jewson, &M. Brierley. 1928. The quantitative study of soil fungi. Proc. Int. Congr. Soil Sci.3:48–71.

    Google Scholar 

  • Bright, T. B., P. A. Dixon, &W. T. Whymper. 1949. Effect of ethyl alcohol and CO2 on the sporulation of baker’s yeast. Nature164: 544.

    Article  CAS  Google Scholar 

  • Brockmann, M. C., &T. J. B. Stier. 1947a. The use of sodium azide for determining the fermentative ability of yeast developed under different oxygen tensions. Jour. Bact.53: 621–629.

    CAS  Google Scholar 

  • —————, & —————. 1947b. Steady state fermentation by yeast in a growth medium. Jour. Cell. & Comp. Physiol.29: 1–14.

    Article  CAS  Google Scholar 

  • Brodie, H. J. 1945. Further investigations on the mechanism of germination of the conidia of various species of powdery mildew at low humidity. Can. Jour. Res.23: 198–211.

    Google Scholar 

  • —————. 1942. The development and structure of the conidia ofErysiphe polygoni DC. and their germination at low humidity. Can. Jour. Res. C20: 41–61.

    Google Scholar 

  • Brooks, C., C. O. Bretley, & L. P. McColloch. 1939. Transit and storage diseases of fruits and vegetables as affected by initial CO2 treatments. U.S. Dep. Agr. Tech. Bull. 519.

  • Brown, H. T. 1914. Some studies on yeast. Ann. Bot. (London).28: 197–226.

    Google Scholar 

  • Brown, M. E., &G. Metcalfe. 1957. Nitrogen fixation by a species ofPullularia. Nature180: 282.

    Article  CAS  Google Scholar 

  • Brown, W. 1915. Studies in the physiology of parasitism. I. The action ofBotrytis cinerea. Ann. Bot. (London)29: 313–348.

    Google Scholar 

  • ————— 1917. Studies in the physiology of parasitism. IV. On the distribution of cytase in cultures ofBotrytis cinerea. Ann. Bot. (London)31: 489–498.

    CAS  Google Scholar 

  • ————— 1922. On the growth and germination of fungi at various temperatures and in various concentrations of oxygen and carbon dioxide. Ann. Bot. (London)36: 257–283.

    CAS  Google Scholar 

  • ————— 1923. Experiments on the growth of fungi on culture media. Ann. Bot. (London)37: 105–129.

    CAS  Google Scholar 

  • Buchanan, R. E., &E. I. Fulmer. 1928. Physiology and biochemistry of bacteria. Williams and Wilkins Co., Baltimore, Vol.I, 516 pp.

    Google Scholar 

  • —————, & —————. 1930. Physiology and biochemistry of bacteria. Williams and Wilkins Co., Baltimore, Vol.II, 689 pp.

    Google Scholar 

  • Bulit, J., &J. Louvet. 1960. A technique for the study of the action of carbon dioxide on fungi parasitizing underground plant organs. Ann. Inst. Pasteur98: 557–561.

    CAS  Google Scholar 

  • Bullen, J. J. 1949. The yeastlike form ofCryptococcus farciminosus (Histoplasma farciminosum). Jour. Pathol. Bact.61: 117–120.

    Article  CAS  Google Scholar 

  • Buller, A. H. R. 1909. Researches on fungi. Longmans, Green and Co., New York, Vol.I, xi + 287 pp.

    Google Scholar 

  • ————— 1909–1934. Researches on fungi. Longmans, Green and Co., New York, ii + 492 pp.; iii + 611 pp.; iv + 329 pp.; v + 416 pp.; vi + 513 pp.

    Google Scholar 

  • Burgeff, H. 1909. Die Worzelpilze der Orchideen, ihre Kultur und ihr Leben in der Pflanze. G. Fischer, Jena, 220 pp.

    Google Scholar 

  • ————— 1911. Die Anzucht tropischer Orchideen aus Samen. G. Fischer, Jena, 89 pp.

    Google Scholar 

  • ————— 1936. Samenkeimung der Orchideen. G. Fischer, Jena, 312 pp.

    Google Scholar 

  • Burges, A., &E. Fenton. 1953. The effect of carbon dioxide on the growth of certain soil fungi. Trans. Brit. Mycol. Soc.36: 104–108.

    CAS  Google Scholar 

  • Burris, R. H., &P. W. Wilson. 1947. Biological nitrogen fixation. Ann. Rev. Biochem.14: 685–708.

    Article  Google Scholar 

  • Buston, H. W., M. O. Moss, &D. Tyrrell. 1966. The influence of carbon dioxide on growth and sporulation ofChaetomium globosum. Trans. Brit. Mycol. Soc.49(2): 387–396.

    Google Scholar 

  • Butkevich, V. S. 1924. Uber die Bildung der Glucon and Citronsaure in den Pilzkulturen auf Zucker. Biochem. Zeitschr.154: 177–190.

    CAS  Google Scholar 

  • ————— 1934. [Biochemical production of oxalic acid and the participation of the mycelium in this process.] Biochem. Zeitschr.272: 371–375.

    CAS  Google Scholar 

  • —————. 1929a. Uber Bildung von Fumarsaure in den Zuckerkulturen vonMucor stolonifer (Rhizopus nigricans) und sein Verhalten zur Brenztraubsaure. Biochem. Zeitschr.206: 440–456.

    CAS  Google Scholar 

  • —————, & —————. 1929b. Uber die Umvandlung der Essigsaure durchMucor stolonifer in Bernstein- und Fumarsaure und das Verfahrung zur Trennung und quantitative Bestimmung dieser Sauren. Biochem. Zeitschr.207: 302–318.

    CAS  Google Scholar 

  • —————, & —————. 1930a. Uber die Verhaltnisse zwischen Essig-, Bernstein-, Fumar-, und Oxalsaure in den Kultures vonMucor stolonifer. Biochem. Zeitschr.219: 87–102.

    CAS  Google Scholar 

  • —————, & —————. 1930b. Uber die Umwandlung des Athylalkohole in den Kulturen vonMucor stolonifer. Biochem. Zeitschr.219: 103–121.

    CAS  Google Scholar 

  • Caldwell, J. 1963. Effects of high partial pressures of oxygen on fungi. Nature197: 772–774.

    Article  CAS  Google Scholar 

  • Cantino, E. C. 1949. The physiology of the aquatic Phycomycete,Blastocladia pringsheimii, with emphasis on its nutrition and metabolism. Amer. Jour. Bot.36: 94–112.

    Google Scholar 

  • ————— 1956. The relation between cellular metabolism and morphogenesis inBlastocladiella. Mycologia48: 225–240.

    Article  Google Scholar 

  • —————. 1961. The relationship between biochemical and morphological differentiation in non-filamentous aquatic fungi.In: “Microbial Reaction to Environment,” Cambridge: The University, Symp. Soc. Gen. Microbiol. No. 11, 243 pp.

    Google Scholar 

  • —————. 1956. The stimulatory effect of light upon the growth and carbon dioxide fixation inBlastocladiella. Mycologia48: 777–799.

    Article  Google Scholar 

  • Carson, S. F., J. W. Foster, W. E. Jefferson, E. F. Phares, &D. S. Anthony. 1950. Organic synthesis by C2 (compound) condensation and reversible carbon dioxide exchange reactions. Brookhaven Conf. Rep., CO2 Assimilation Reactions in Biological Systems,BNL70 (C-13): 56–63.

    CAS  Google Scholar 

  • —————, —————, —————, —————, & —————. 1951. Oxidative formation of lactic acid by a fungus. Arch. Biochem. & Biophys.33: 448–458.

    Article  CAS  Google Scholar 

  • Chain, E. B., &G. Gualandi. 1954. Amperometric aeration studies under conditions of agitated submerged cultures in shake flasks and stirred fermenters. Rend. Ist. Super. Sanita (English ed.)17: 5–60.

    Google Scholar 

  • Charles, H. P. 1962. Response ofNeurospora mutants to carbon dioxide. Nature195: 359–360.

    Article  PubMed  CAS  Google Scholar 

  • —————. 1964. Carbon dioxide mutants inNeurospora. Nature201: 1004–1006.

    Article  PubMed  CAS  Google Scholar 

  • Chester, K. S. 1946. The nature and prevention of the cereal rusts as exemplified in the leaf rust of wheat. Stechert-Hafner, Inc., New York, 269 pp.

    Google Scholar 

  • Child, M. 1929. Preliminary studies on the genusDaldinia. Ann. Missouri Bot. Gard.16: 411–486.

    Article  CAS  Google Scholar 

  • Chin, B. 1961. Changes in gross chemical compounds ofTrichophyton mentagrophytes during incubation in increased carbon dioxide tensions. Diss. Abstr.22: 1793–1794.

    Google Scholar 

  • —————. 1957. Growth ofTrichophyton mentagrophytes andTrichophyton rubrum in increased carbon dioxide tensions. Jour. Gen. Microbiol.16: 642–646.

    CAS  Google Scholar 

  • —————, & —————. 1963a. Stimulation of glucose metabolism inTrichophyton mentagrophytes during incubation in increased carbon dioxide tension. Jour. Gen. Microbiol.30: 121–126.

    CAS  Google Scholar 

  • —————, & —————. 1963b. Changes in gross chemical composition ofTrichophyton mentagrophytes during incubation in increased carbon dioxide tensions. Jour. Gen. Microbiol.30: 113–120.

    CAS  Google Scholar 

  • Chlopin, G. W., &G. Tamman. 1903. Einfluss hoher Drucke auf Mikroorganismen. Zeitschr. Hyg.14: 171–204.

    Article  Google Scholar 

  • Ciferri, O., &F. Sala. 1962. Carbohydrate metabolism ofPrototheca zopfii. II. Carbon dioxide fixation by cell-free extracts. Enzymologia24: 283–296.

    PubMed  Google Scholar 

  • Claassen, H. 1935. Exchange of matter, respiration and gas exchange of yeast cells in experiments with aeration and continuous feeding. Biochem. Zeitschr.275: 350–360.

    CAS  Google Scholar 

  • Cochran, L. C. 1932. A study of twoSeptoria leaf spots of celery. Phytopathology27: 791–812.

    Google Scholar 

  • Cochrane, V. W. 1956. The anaerobic dissimilation of glucose byFusarium lini. Mycologia48: 1–12.

    Article  Google Scholar 

  • ————— 1958. Physiology of fungi. John Wiley & Sons, Inc., New York, xiii + 524 pp.

    Google Scholar 

  • Committee on Bacteriological Technique. 1957. Manual of microbiological methods. McGraw-Hill Book Co., New York, x + 315 pp.

    Google Scholar 

  • Cooke, W. B. 1966. Fungi in sludge digesters. Proc. 20th Industrial Waste Conf. (1965), Purdue Univ. Eng. Bull.50: 6–17.

    Google Scholar 

  • Coons, G. H. 1916. Factors involved in the growth and the pycnidium formation ofPlenodomus fuscomaculans. Jour. Agr. Res.5: 713–769.

    Google Scholar 

  • Couch, J. N. 1939. A newConidiobolus with sexual reproduction. Amer. Jour. Bot.26: 119–130.

    Article  Google Scholar 

  • Crasemann, J. M. 1954. The nutrition ofChytridium andMacrochytrium. Amer. Jour. Bot.41: 302–310.

    Article  Google Scholar 

  • Czapek, F. 1902. Untersuchungen über die Stickstoffgewinnung und Eiweissbildung der Schimmelpilze. Hofmeister’s Beiträge Chem. Physiol. & Pathol.2: 557–590.

    CAS  Google Scholar 

  • Darby, R. T., &D. R. Goddard. 1950. Studies of the respiration of the mycelium ofMyrothecium verrucaria. Amer. Jour. Bot.37: 379–387.

    Article  CAS  Google Scholar 

  • Denny, F. E. 1933. Oxygen requirements ofNeurospora sitophila for formation of perithecia and growth of mycelium. Contrib. Boyce Thompson Inst.5: 95–102.

    CAS  Google Scholar 

  • Dobbs, C. G., &W. N. Hinson. 1953. A widespread fungistasis in soils. Nature172: 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Dodge, B. O. 1932. Heterothallism and hypothetical hormones inNeurospora. Bull. Torrey Bot. Club58: 517–522.

    Article  Google Scholar 

  • Dodge, C. W. 1935. Medical mycology. C. V. Mosby Co., St. Louis, 900 pp.

    Google Scholar 

  • D’Oliveira, B. 1939. Can rusts fix nitrogen? Nature144: 480.

    Article  CAS  Google Scholar 

  • Domsch, K. H. 1954. Keimungsphysiologische Untersuchungen mit Sporen vonErysiphe graminis. Arch. Mikrobiol.20: 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Doran, W. L. 1922. Effect of external and internal factors on the germination of fungus spores. Bull. Torrey Bot. Club49: 313–336.

    Article  Google Scholar 

  • Drouhet, E., &F. Mariat. 1952. Etude des facteurs déterminant le développement de la phase levure deSporotrichum schencki. Ann. Inst. Pasteur83: 506–514.

    CAS  Google Scholar 

  • Duckworth, R. B., &G. C. M. Harris. 1950. The morphology ofPenicillium chrysogenum in submerged fermentation. Trans. Brit. Mycol. Soc.32: 224–236.

    Google Scholar 

  • Duggar, B. M. 1901. Physiological studies with reference to the germination of certain fungus spores. Bot. Gaz.31: 38–66.

    Article  Google Scholar 

  • —————. 1916. Studies in the physiology of fungi. I. Nitrogen fixation. Ann. Missouri Bot. Gard.3: 413–437.

    Article  CAS  Google Scholar 

  • —————. 1911. Relation of certain fungi to nitrogen fixation. Science33: 191.

    Google Scholar 

  • Duncan, C. G. 1960. Wood attacking capacities and physiology of soft rot fungi. For. Prod. Lab., Madison, Wisconsin, Report 2173.

    Google Scholar 

  • Durbin, R. D. 1955. Straight-line function of growth of microorganisms at toxic levels of carbon dioxide. Science121: 734–735.

    Article  PubMed  CAS  Google Scholar 

  • Durrell, L. W. 1924. Stimulation of spore germination by carbon dioxide. Science60: 499.

    Article  PubMed  CAS  Google Scholar 

  • Edgerton, C. W. 1910. The bean anthracnose. Louisiana Agr. Exp. Sta. Bull.119: 1–55.

    Google Scholar 

  • Edmondson, J. E., &W. H. E. Reid. 1942. Various treatments which affect the growth of mold mycelia in cream and resultant butter. (Abstr.) Jour. Dairy Sci.25: 717–718.

    Google Scholar 

  • Ehrlich, F. 1909. Über die Entstehung der Bernsteinsäure bei der alkoholischen Gärung. Biochem. Zeitschr.18: 391–423.

    CAS  Google Scholar 

  • Elarosi, H. 1956. Sporulation of fungi inside the plant host cell. Nature177: 665–666.

    Article  Google Scholar 

  • Emerson, R., &E. C. Cantino. 1948. The isolation, growth and metabolism ofBlastocladia in pure culture. Amer. Jour. Bot.35: 157–171.

    Article  CAS  Google Scholar 

  • Emodi, G., &E. Sarkany. 1937. Kinetics of yeast respiration. Biochem. Zeitschr.290: 71–90.

    CAS  Google Scholar 

  • Enebo, L. W. 1954. Studies in cellulose decomposition by an anaerobic thermophilic bacterium and two associated non-cellulolytic species. Viktor Pettersons Bokindustrie Aktiebolag, Stockholm, 125 pp.

    Google Scholar 

  • Erkama, J., I. Heikkinen, &B. Hagerstrand. 1949. Metabolisms ofAspergillus niger. I. Effect of aeration in the formation of citric and oxalic acids in surface mold cultures. Acta Chem. Scand.3: 858–861.

    Article  CAS  Google Scholar 

  • Fellows, H. 1928. The influence of oxygen and carbon dioxide on the growth ofOphiobolus graminis in pure culture. Jour. Agr. Res.37: 349–355.

    CAS  Google Scholar 

  • Feniksova, R. V., &R. B. Segal. 1953.Aspergillus as amylase producer. III. Influence of growth conditions on formation of conidia byAspergillus oryzae. Mikrobiologiya22: 543–550.

    CAS  Google Scholar 

  • Fildes, P., &J. McIntosh. 1921. An improved form of McIntosh and Fildes anaerobic jar. British Jour. Exp. Pathol.2: 153–154.

    Google Scholar 

  • Fineman, B. C. 1921. A study of the thrush parasite. Jour. Infec. Dis.28: 185–200.

    Google Scholar 

  • Finn, R. K. 1954. Agitation aeration in the laboratory and in industry. Bact. Rev.18: 254–274.

    PubMed  CAS  Google Scholar 

  • Follstad, M. N. 1966. Mycelial growth rate and sporulation ofAlternaria tenuis, Botrytis cineria, Cladosporium herbarum andRhizopus stolonifer in low-oxygen atmospheres. Phytopathology56(9): 1098–1099.

    Google Scholar 

  • Foster, J. W. 1949. Chemical activities of the fungi. Academic Press, New York, xviii + 648 pp.

    Google Scholar 

  • —————. 1959. Metabolic exchange of carbon dioxide with carboxyls and oxidative synthesis of C4 dicarboxylic acids. Proc. Natl. Acad. Sci. U.S.36: 219–229.

    Article  Google Scholar 

  • —————, —————. 1949. Aerobic formation of fumaric acid in the moldRhizopus nigricans: synthesis by direct C2 condensation. Proc. Natl. Acad. Sci. U.S.35: 663–672.

    Article  CAS  Google Scholar 

  • —————, —————. 1941. Radioactive carbon as an indicator of carbon dioxide utilization. VII. The assimilation of carbon dioxide by molds. Proc. Natl. Acad. Sci. U.S.27: 590–596.

    Article  CAS  Google Scholar 

  • —————. 1948. Anaerobic formation of fumaric acid by the moldRhizopus nigricans. Jour. Bact.56: 329–338.

    CAS  Google Scholar 

  • —————, & —————. 1949. Carbon dioxide inhibition of anaerobic fumarate formation in the moldRhizopus nigricans. Arch. Biochem.21: 135–142.

    PubMed  CAS  Google Scholar 

  • —————. 1945. Microbiological aspects of penicillin. V. Conidiophore formation in submerged culture. Jour. Bact.50: 365–368.

    CAS  Google Scholar 

  • —————. 1939a. The specific effect of zinc and other heavy metals on growth and fumaric acid production byRhizopus. Jour. Bact.37: 599–617.

    CAS  Google Scholar 

  • —————, & —————. 1939b. Production of fumaric acid by molds belonging to the genusRhizopus. Jour. Amer. Chem. Soc.61: 127–135.

    Article  CAS  Google Scholar 

  • Fowell, R. R. 1952. Sodium acetate agar as a sporulation medium for yeast. Nature170: 578.

    Article  PubMed  CAS  Google Scholar 

  • —————. 1960. Factors controlling the sporulation of yeasts. I. The presporulation phase. Jour. Appl. Bact.23: 53.

    Google Scholar 

  • Frampton, V. L., &P. M. Marsh. 1941. Respiration of conidia ofSclerotinia fructicola. (Abstr.) Phytopathology31: 9.

    Google Scholar 

  • Frank, A. B. 1892. Lehrbuch der Botanik. W. Engelmann, Leipzig, 431 pp.

  • ————— 1893. Die Assimilation des frien Stickstoffs durch die Pflanzenwelt. Bot. Zeitung51: 139–156.

    Google Scholar 

  • Frankel, C. 1889. Die Einwirkung der Kohlensäure auf die Lebenstätigkeit der Mikroorganismen. Zeitschr. Hyg.5: 332–362.

    Article  Google Scholar 

  • Frankland, P. F. 1889. Uber den Einfluss der Kohlensäure und anderer Gase auf die Entwicklungs fahigkeit der Mikroorganismen. Zeitschr. Hyg.6: 13–22.

    Article  Google Scholar 

  • Frei, H. 1942. [Quantitative studies on the assimilation of elementary nitrogen from the air by pellicle forming yeasts.] Zentralbl. Bakt. II.104: 326–365.

    Google Scholar 

  • Froelich, H. 1907. Stickstoffbildung durch einige auf abgestorbenen Pflanzen häufige Hyphomyceten. Jahrb. Wiss. Bot.45: 256–302.

    Google Scholar 

  • Fuchs, J. 1926. Schimmelpilze als Hefebildner. Zentralbl. Bakt. II.66: 490–500.

    Google Scholar 

  • Fulmer, E. I. 1923. Utilization of atmospheric nitrogen bySaccharomyces cerevisiae. Science57: 645–646.

    Article  PubMed  CAS  Google Scholar 

  • —————. 1925. The fixation of atmospheric nitrogen by yeast as a function of the hydrogen-ion concentration. Jour. Phys. Chem.29: 1415–1418.

    Article  CAS  Google Scholar 

  • Garrett, S. D. 1936–1944. Soil conditions and the take-all disease of wheat. Ann. Appl. Biol.23: 667–699;24: 747–751;25: 742–766;26: 47–55;27: 199–204;28: 14–18, 325–332;31: 186–191.

    Article  CAS  Google Scholar 

  • ————— 1956. Biology of root-infecting fungi. Cambridge University Press, Cambridge, xi + 293 pp.

    Google Scholar 

  • Gassner, G., &W. Franke. 1938. Untersuchungen über den Stickstoffhaushalt rostinfizieren Getreideblatter. Phytopath. Zeitschr.11: 517–570.

    CAS  Google Scholar 

  • —————. 1929. Investigations on the dependence of the infection relations of the cereal rust fungi on the carbon dioxide content of the atmosphere. Phytopath. Zeitschr.1: 1–30.

    CAS  Google Scholar 

  • Geddes, W. F., L. S. Cuendet, & C. M. Christensen. 1955. Recent investigations on grain storage. 3rd Int. Bread Congr., Hamburg (1955), pp. 136–139.

  • Gest, H., &J. L. Stokes. 1952. The effect of carbon dioxide on the reduction of methylene blue by microorganisms. Antonie van Leeuwenhoek Jour. Microbiol. & Serol.18: 55–62.

    Article  CAS  Google Scholar 

  • Gibbs, M., &R. Gastel. 1953. Glucose dissimilation byRhizopus. Arch. Biochem. Biophys.43: 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Gitterman, C. O., &S. G. Knight. 1952. Carbon dioxide fixation into amino acids ofPenicillium chrysogenum. Jour. Bact.64: 223–231.

    Article  CAS  Google Scholar 

  • Glen-Bott, J. I. 1955. OnHelicodendron tubulosum and some similar species. Trans. Brit. Mycol. Soc.38: 17–30.

    Google Scholar 

  • Goddard, D. R. 1935. The reversible heat situation inducing germination and increased respiration in the ascospores ofNeurospora. Jour. Gen. Physiol.19: 45–60.

    Article  CAS  Google Scholar 

  • ————— 1939. The reversible heat activation of respiration inNeurospora. Cold Spring Harbor Symp. Quant. Biol.7: 362–376.

    CAS  Google Scholar 

  • —————. 1938. Respiratory block in the dormant spores ofNeurospora tetrasperma. Plant Physiol.13: 241–264.

    PubMed  CAS  Google Scholar 

  • Goddard, H. N. 1913. Can fungi living in agricultural soils accumulate free nitrogen? Bot. Gaz.56: 249–305.

    Article  Google Scholar 

  • Gold, S. 1959. Distribution of some lignicolous Ascomycetes and Fungi Imperfecti in an estuary. Jour. Elisha Mitchell Sci. Soc.75: 25–28.

    Google Scholar 

  • Golding, N. S. 1937. The gas requirements of molds. I. A preliminary report on the gas requirements ofPenicillium roqueforti. Jour. Dairy Sci.20: 319–343.

    CAS  Google Scholar 

  • ————— 1940a. The gas requirements of molds. II. The oxygen requirements ofPenicillium roqueforti in the presence of nitrogen and the absence of carbon dioxide. Jour. Dairy Sci.23: 879–889.

    CAS  Google Scholar 

  • ————— 1940b. The gas requirements of molds. III. The effect of various concentrations of carbon dioxide on the growth ofPenicillium roqueforti in air. Jour. Dairy Sci.23: 891–898.

    CAS  Google Scholar 

  • -----. 1940c. Blue-veined cheese (Roquefort type) ripened in cans under gascontrolled conditions. Proc. Western Div., Amer. Dairy Sci. Ass., 26th Ann. Meet. 1940, pp. 44–47.

  • ————— 1945. The gas requirements of molds. IV. A preliminary interpretation of the growth rates of four common mold cultures on the basis of absorbed gases. Jour. Dairy Sci.28: 737–750.

    CAS  Google Scholar 

  • Golueke, C. G. 1957. Comparative studies of the physiology ofSapromyces and related genera. Jour. Bact.74: 337–343.

    CAS  Google Scholar 

  • Gottschalk, A. 1926. Biochemische Synthese von Fumarsaure und Brenztraubsaure. Zeitschr. Physiol. Chem.152: 136–145.

    CAS  Google Scholar 

  • Gove, P. B. (Ed.). 1961. Webster’s Third New International Dictionary. G. & C. Merriam Co., Springfield, Mass., pp. 56a, 2662.

  • Grabbe, K. 1963. [Products of heterotrophic CO2 fixation by various microorganisms.] Zentralbl. Bakt. I.191: 211–216.

    CAS  Google Scholar 

  • Grainger, J. 1947. The ecology ofErysiphe graminis DC. Trans. Brit. Mycol. Soc.31: 54–65.

    Google Scholar 

  • Green, E. 1930. Observations on certain Ascobolaceae. Trans. Brit. Mycol. Soc.15: 321–322.

    Google Scholar 

  • Griffin, D. H. 1965. The interaction of hydrogen ion, carbon dioxide, and potassium ions in controlling the formation of resistant sporangia inBlastocladiella emersonii. Jour. Gen. Microbiol.40: 13–28.

    CAS  Google Scholar 

  • Grosser, A. H., H. Kundtner-Schwarzkopf, &K. Bernhauer. 1950. Influence of cultivation conditions on pigment formation byPenicillium strains. Arch. Mikrobiol.15: 247–252.

    Article  Google Scholar 

  • Grune, W. N. 1965. Automation of sludge digester operation. Jour. Water Poll. Control Federation37: 353–380.

    CAS  Google Scholar 

  • Gundersen, K. 1961.Fomes annosus under reduced oxygen pressure and the effect of carbon dioxide. Nature190: 649.

    Article  PubMed  CAS  Google Scholar 

  • Gunner, H. B., &M. Alexander. 1964. Anaerobic growth ofFusarium oxysporum. Jour. Bact.87: 1309–1311.

    CAS  Google Scholar 

  • Gyorgy, P. 1954. Biotin.In: “The Vitamins,” ed. by W. H. Sebrell, Jr., and R. S. Harris, Academic Press, New York,1, pp. 527–588.

    Google Scholar 

  • Halden, W. 1934. The fat and lipoid metabolism of yeasts. III. Sterol and fat enrichment in bottom brewer’s yeast. Zeitschr. Physiol. Chem.225: 249–272.

    CAS  Google Scholar 

  • Hall, I. C. 1922. Differentiation and identification of the sporulating anaerobes. Jour. Infec. Dis.30: 445–504.

    Google Scholar 

  • ————— 1928. Anaerobiosis.In: “The Newer Knowledge of Bacteriology and Immunology,” ed. by E. O. Jordan and I. S. Falk, Univ. Chicago Press, Chicago, Chapter 13.

    Google Scholar 

  • ————— 1929. A review of the development and application of physical and chemical principles in the cultivation of obligately anaerobic bacteria. Jour. Bact.17: 255–301.

    CAS  Google Scholar 

  • Hampson, C. R. 1954. Sporulation capacity ofCoccidioides immitis affected by cultural conditions. Jour. Bact.67: 739–740.

    CAS  Google Scholar 

  • Harley, J. L. 1959. The biology of mycorrhiza. Leonard Hall (Books) Ltd., London, 233 pp.

    Google Scholar 

  • Harris, J. O. 1953. The effect of CO2 on oxygen uptake by “resting” bacteria. (Abstr.) Bact. Proc. 1953: 90.

  • Hart, H. 1926. Factors affecting the development of flax rust,Melampsora lini (Pers.) Lev. Phytopathology16: 185–205.

    Google Scholar 

  • Haskins, R. H., &W. H. Weston, Jr. 1950. Studies in the lower Chytridiales. I. Factors affecting pigmentation, growth and metabolism of a strain ofKarlingia (Rhizophlyctis) rosea. Amer. Jour. Bot.37: 739–750.

    Article  CAS  Google Scholar 

  • Hawker, L. E. 1950. Physiology of fungi. Univ. London Press, London, xvi + 360 pp.

    Google Scholar 

  • ————— 1957. The physiology of reproduction in fungi. Cambridge Univ. Press, London & New York, viii + 128 pp.

    Google Scholar 

  • ————— 1966. Environmental influences on reproduction.In: “The Fungi,” ed. by G. C. Ainsworth and A. S. Sussman, Vol.II, pp. 435–469.

    Google Scholar 

  • —————. 1951. A re-investigation of the root-nodules ofElaeagnus, Hippophae, Alnus, andMyrica with special reference to the morphology and life histories of the causative organisms. Jour. Gen. Microbiol.5: 369–386.

    CAS  Google Scholar 

  • Heath, E. C., D. Nasser, &H. Koffler. 1956. Biochemistry of filamentous fungi. III. Alternate routes for the breakdown of glucose byFusarium lini. Arch. Biochem. & Biophys.64: 80–87.

    Article  CAS  Google Scholar 

  • Heinze, B. H. 1906. Sind Pilze imstande, den elementaren Stickstoff der Luft zu verarbeiten und den Boden an Gesamtstickstoff anzureichern. Ann. Mycol.4: 41–61.

    Google Scholar 

  • Heller, H. H. 1921. Principles concerning the isolation of anaerobic studies in pathogenic anaerobes, II. Jour. Bact.6: 445–470.

    CAS  Google Scholar 

  • Hemmi, T., &T. Abe. 1928. An outline of the investigations on the seed and seedling rot of rice caused by a water moldAchlya prolifera. Japanese Jour. Bot.4: 113–123.

    Google Scholar 

  • Henry, B. W., &A. L. Anderson. 1948. Sporulation byPiricularia oryzae. Phytopathology38: 265–278.

    Google Scholar 

  • Heplar, J. Q., &E. L. Tatum. 1954. Some factors affecting carbon dioxide metabolism inNeurospora crassa. Jour. Biol. Chem.208: 489–494.

    CAS  Google Scholar 

  • Hes, J. W. 1938. Function of carbon dioxide in the metabolism of heterotrophic cells. Nature141: 647.

    Article  CAS  Google Scholar 

  • Hiltner, L. 1904. Die Bindung von freien Stickstoff durch das Zusammenwirken von Schizomyceten und von Eumyceten mit höheren Pflanzen.In: “Handbuch der technischen Mykologie,” ed. by F. Lafar, Gustav Fischer, Jena,3: 24–70.

    Google Scholar 

  • Hodson, A. Z. 1949. Oleic acid interference in theNeurospora crassa assay for biotin. Jour. Biol. Chem.179: 49–52.

    CAS  Google Scholar 

  • Hofmann, H. 1930. Influence of carbon dioxide on fermentation by yeast. Wochenschr. Brau.47: 228–230.

    CAS  Google Scholar 

  • Hollis, J. P. 1948. Oxygen and carbon dioxide relations ofFusarium oxysporum Schlecht. andFusarium eumartii Carp. Phytopathology38: 761–775.

    CAS  Google Scholar 

  • Huelin, F. E., &C. G. Tindale. 1947. The gas storage of Victorian apples. Jour. Dep. Agr. Victoria45(2): 74–80.

    CAS  Google Scholar 

  • Hull, R. 1939.Byssochlamys fulva and its eradication from preserved fruit. Ann. Appl. Biol.26: 800–822.

    Article  CAS  Google Scholar 

  • Husain, S. M., &S. H. Z. Naqui, 1959. Effect of gases on the germination ofAlternaria tenuissima. Scientist (Pakistan)3(2–3): 39–42.

    CAS  Google Scholar 

  • Imschenezki, A. A. 1959. Mikrobiologie der Cellulose. Akademie Verlag, Berlin, p. 168.

    Google Scholar 

  • Ingold, C. T. 1961. The biology of fungi. Hutchinson Educational Ltd., London, 124 pp.

    Google Scholar 

  • —————. 1964. Stimulation of spore discharge inSordaria by carbon dioxide. Ann. Bot. (London) N.S.28: 325–329.

    Google Scholar 

  • Ingraham, J. L., &R. Emerson. 1954. The nutrition and metabolism of the aquatic Phycomycete,Allomyces. Amer. Jour. Bot.41: 146–152.

    Article  CAS  Google Scholar 

  • Ishikura, T., &J. W. Foster. 1961. Incorporation of molecular oxygen during microbial utilization of olefins. Nature192: 892–893.

    Article  CAS  Google Scholar 

  • Ivanov, N. N. 1935. Biochemical production of citric acid. Proc. Inst. Res. Food Ind.3(1): 3–4.

    CAS  Google Scholar 

  • ————— 1936. Biochemical production of citric acid. Proc. Inst. Sci. Res. Food Ind.3(4,5): 7–167.

    Google Scholar 

  • Jeffreys, E. G., P. W. Brian, H. G. Hemming, &D. Lowe. 1953. Antibiotic production by the microfungi of the acid heath soils. Jour. Gen. Microbiol.9: 314–341.

    Google Scholar 

  • Jennison, M. W., M. D. Newcomb, &R. Henderson. 1955. Physiology of the wood-rotting Basidiomycetes. I. Growth and nutrition in submerged culture in synthetic media. Mycologia47: 275–304.

    Article  Google Scholar 

  • Jenny, J. 1941. The scientific basis of storing sweet must under carbon dioxide pressure. The absorption capacity of juice for CO2. III. Landw. Jahrb. Schweiz.55: 623–656.

    CAS  Google Scholar 

  • Jones, E. S. 1922. Relation of temperature, soil moisture and oxygen to the germination of the spore ofUstilago avenae. (Abstr.) Phytopathology12: 45.

    Google Scholar 

  • ————— 1923. Influence of temperature, moisture and oxygen on spore germination ofUstilago avenae. Jour. Agr. Res.24: 577–591.

    CAS  Google Scholar 

  • Kadelbach, E. 1931. Über Saureresistentz und Rassenbildung beiAspergillus niger. Jahrb. Wiss. Bot.75: 399–438.

    Google Scholar 

  • Karow, E. O., &S. Waksman. 1947. Production of citric acid in submerged culture. Ind. Eng. Chem.39: 821–825.

    Article  Google Scholar 

  • Karsner, H. T., &O. Saphir. 1926. Influence of high partial pressures of oxygen and the growth of certain molds. Jour. Infec. Dis.39: 231–236.

    Google Scholar 

  • Kempner, W. 1939. The role of oxygen tension in biological oxidation. Cold Spring Harbor Symp. Quant. Biol.7: 264–289.

    Google Scholar 

  • Klaus, H. 1941. Untersuchungen uberAlternaria solani Jones & Grout, Insbesondere uber seine Pathogenität an Kartoffelknollen in Abhangigkeit von den Aussenfaktoren. Phytopath. Zeitschr.13: 126–195.

    Google Scholar 

  • Klebs, G. 1900. Zur Physiologie der Fortplanzung einiger Pilze. Jahrb. Wiss. Bot.35: 80–203.

    Google Scholar 

  • Klein, H. P. 1951. Relation of coenzyme A to steroid and total lipid synthesis in yeast. (Abstr.) Fed. Proc.10: 209.

    Google Scholar 

  • Kleinzeller, A. 1941. The formation of succinic acid in yeast. Biochem. Jour.35: 495–501.

    CAS  Google Scholar 

  • Klinger, I. J., &K. Guggenheim. 1935. The influence of vitamin C on the growth of anaerobes in the presence of air. Jour. Bact.35: 141–156.

    Google Scholar 

  • Klotz, L. J. 1923. Studies in the physiology of the fungi. XVI. Some aspects of nitrogen metabolism in fungi. Ann. Missouri Bot. Gard.10: 299–368.

    Article  Google Scholar 

  • —————. 1962. A method for determining the oxygen requirement on fungi in liquid media. Plant Dis. Rep.46: 606–608.

    Google Scholar 

  • —————, —————, & —————. 1963. Oxygen requirement of three wood-rotting fungi in a liquid medium. Phytopathology53: 302–305.

    CAS  Google Scholar 

  • —————, —————, —————. 1964. Rate of oxygen supply and distribution of wood-rotting fungi in soils. Soil Sci.99: 200–204.

    Google Scholar 

  • Kluyver, A. J. 1940. Microbial metabolism and its significance to the microbiologist. Proc. 3rd Int. Congr. Microbiol., New York, p. 73.

  • —————. 1933. Methods for the study of the metabolism of molds. Biochem. Zeitschr.266: 68–81.

    CAS  Google Scholar 

  • Knorr, M. 1923. Ergebnisse neurer Arbeiten über krankheitserrengende Anaerobien. I. Teil. Krankheitserregende anaerobe Sporenbildner, ausschliesslich Tetanus und Botulinus. Zentralbl. Gesam. Hyg.4: 81–100, 161–180.

    Google Scholar 

  • ————— 1924. Ergebnisse neurer Arbeiten über krankheitserrengende Anaerobien. II. Teil, 1:Botulismus. Zentralbl. Gesam. Hyg.7: 161–171, 241–253.

    Google Scholar 

  • Koch, A. 1904. Die Bindung von freien Stickstoff durch frei Lebende niedere Organismen.In: “Handbuch der technischen Mykologie,” ed. by F. Lafar, Gustav Fischer, Jena,3: 1–23.

    Google Scholar 

  • Koch, R. 1933. Growth of yeast and oxygen deficiency. Wochenschr. Brau.50: 169–172.

    CAS  Google Scholar 

  • Koffler, H., R. L. Emerson, D. Perlman, &H. R. Burris. 1945. Chemical changes in submerged penicillin fermentations. Jour. Bact.50: 517–548.

    CAS  Google Scholar 

  • Koser, S. A., M. H. Wright, &A. Dorfman. 1942. Aspartic acid as a partial substitute for the growth stimulating effect of biotin onTorula cremoris. Proc. Soc. Exp. Biol. Med.51: 204–205.

    CAS  Google Scholar 

  • Krause, A. W. 1930. Untersuchungen uber den Einfluss der Ernahrung, Belichtung und Temperatur auf die Perithecienproduktion einiger Hypocreaceen. Beitrag zur Kulturmethodik einiger Parasitarer und saprophytischer Pilze. Zeitschr. Parasitenk.2: 419–476.

    Article  Google Scholar 

  • Krebs, H. A. 1951. The use of ‘CO2 buffers’ in manometric measurements of cell metabolism. Biochem. Jour. (London)48: 349–359.

    CAS  Google Scholar 

  • Kuhn, F. 1938. [The methods for growth measurement for fungi and their influence of different gas pressures.] Zentralbl. Bakt. II.98: 430–444.

    CAS  Google Scholar 

  • Kuster, E. 1913. Kultur des Mikroorganismen. B. G. Teubner, Leipzig.

    Google Scholar 

  • Lafar, F. 1906. Die Essigsäuregärung. Handbuch der technischen Mykologie5: 539–632.

    Google Scholar 

  • Lambert, E. B. 1933. Effect of excess carbon dioxide on growing mushrooms. Jour. Agr. Res.47: 599–608.

    CAS  Google Scholar 

  • —————. 1934. Distribution of oxygen and carbon dioxide in mushroom compost heaps as affecting microbial thermogenesis, acidity and moisture therein. Jour. Agr. Res.48: 587–601.

    CAS  Google Scholar 

  • Latham, M. E. 1909. Nitrogen assimilation ofSterigmatocystis nigra and the effect of chemical stimulation. Bull. Torrey Bot. Club36: 235–244.

    Article  Google Scholar 

  • Leonian, L. H. 1924. A study of factors promoting pycnidium formation in some Sphaeropsidales. Amer. Jour. Bot.11: 19–50.

    Article  Google Scholar 

  • Lesage, P. 1895. Recherches expérimentales sur la germination des spores duPenicillium glaucum. Ann. Sci. Nat. Bot. 8e Sér.,1: 309–322.

    Google Scholar 

  • Lewis, K. F., &S. Weinhaus. 1951. Assimilation of carbon dioxide in oxalate and citrate byAspergillus niger. Jour. Amer. Chem. Soc.73: 2906–2909.

    Article  CAS  Google Scholar 

  • Lieberman, S. 1956. Carbon dioxide assimilation into organic acids byPenicillium chrysogenum. Diss. Abstr.16: 646.

    Google Scholar 

  • Lilly, V. G., &H. L. Barnett. 1951. Physiology of the fungi. McGraw-Hill Book Co., New York, xii + 464 pp.

    Google Scholar 

  • Lin, C. K. 1940. Germination of the conidia ofSclerotinia fructicola, with special reference to the toxicity of copper. New York Agr. Exp. Sta. Mem.233: 3–33.

    CAS  Google Scholar 

  • Littlefield, N. A., B. A. Wankier, &D. K. Salunkhe, &J. N. McGill. 1966. Fungistatic effects of controlled atmospheres. Appl. Microbiol.14(4): 579–581.

    PubMed  CAS  Google Scholar 

  • Lockwood, L. B., J. J. Stubbs, &C. J. Senseman. 1938. Biochemical studies of some fusaria. Zentralbl. Bakt. II98: 167–171.

    Google Scholar 

  • —————. 1936. Physiology ofRhizopus oryzae. Jour. Agr. Res.53: 849–857.

    CAS  Google Scholar 

  • Löhnis, M. P. 1943. Are pellicle forming yeasts able to assimilate elemental nitrogen? Antonie van Leeuwenhoek Jour. Microbiol. Serol.9: 133–142.

    Google Scholar 

  • Lones, C. W., &C. L. Peacock. 1960. Role of carbon dioxide in the dimorphism ofCoccidioides immitis. Jour. Bact.79: 308–309.

    CAS  Google Scholar 

  • Long, T. J. 1962. The effects of chloramphenicol and 8-azaguanine on normal and abnormal sporocarp development in the mushroomCollybia velutipes. (Abstr.) Amer. Jour. Bot.49: 655.

    Google Scholar 

  • Longree, K. 1939. The effect of temperature and relative humidity on the powdery mildew of roses. Cornell Univ. Agr. Exp. Sta. Mem.223: 1–43.

    Google Scholar 

  • Lopriore, G. 1895. Uber die Einwirkung der Kohlensäure auf das Protoplasma der lebenden Pflanzenzelle. Jahrb. Wiss. Bot.28: 531–626.

    CAS  Google Scholar 

  • Louvet, J., &J. Bulit. 1963. The role played by carbon dioxide in the ecology ofSclerotinia minor andFusarium oxysporum f.melonis. Ann. Inst. Pasteur105: 242–256.

    CAS  Google Scholar 

  • Lund, A. 1934. Studies on Danish fresh water Phycomycetes and notes on their occurrence particularly relative to the hydrogen ion concentration of the water. Kgl. Danske Vidensk. Selskabs Skrift., Naturv. Math. Afd. Ser. 9,6: 1–97.

    Google Scholar 

  • Lundegardth, H. 1923. Significance of carbon dioxide content and hydrogen ion concentration of the soil for the growth of Fusaria. Bot. Notiser1923: 25–52.

    Google Scholar 

  • Luteraan, P. J. 1954. The improvement in growth and nitrate utilization ofHansenula caused by small amounts of ammonium salts. Compt. Rend. Acad. Sci. (Paris)238: 1729–1731.

    CAS  Google Scholar 

  • —————. 1949. Diverse morphological and physiological reactions of fungi produced by the action of oxygen. Compt. Rend. Acad. Sci. (Paris)228: 338–340.

    CAS  Google Scholar 

  • Lynch, V. H., &M. Calvin. 1952. Carbon dioxide fixation by microorganisms. Jour. Bact.63: 525–531.

    CAS  Google Scholar 

  • Macy, H. 1929. Factors influencing the growth of molds in butter. Minn. Univ. Agr. Exp. Sta. Tech. Bull.64: 1–86.

    Google Scholar 

  • Mader, E. O. 1943. Some factors inhibiting the fructification and production of the cultivated mushroom,Agaricus campestris L. Phytopathology33: 1133–1145.

    Google Scholar 

  • Magie, R. O. 1935. Variability of monospore cultures ofCoccomyces hiemalis. Phytopathology25: 131–159.

    CAS  Google Scholar 

  • Mandels, G. R., &A. B. Norton. 1948. Studies on the physiology of spores of the cellulolytic fungusMyrothecium verrucaria. Quartermaster Gen. Lab., Microbiol. Ser., Res. Rep.12: 1–35.

    Google Scholar 

  • —————, & —————. 1949. The invertase ofMyrothecium verrucaria spores; its location, synthesis and secretion. Quartermaster Gen. Lab., Microbiol. Ser., Res. Rep.12: 1–35.

    Google Scholar 

  • Maneval, W. E. 1922. Germination of teliospores of rusts at Columbia, Missouri. Phytopathology12: 471–488.

    Google Scholar 

  • ————— 1924. The viability of uredospores. Phytopathology14: 403–407.

    Google Scholar 

  • Mann, M. L. 1932. Calcium and magnesium requirements ofAspergillus niger. Bull. Torrey Bot. Club59: 443–490.

    Article  Google Scholar 

  • Mariat, F. 1960. The effect of CO2 on the growth ofSporotrichum schenckii. Compt. Rend. Acad. Sci. (Paris)250: 3503–3505.

    CAS  Google Scholar 

  • Martin, S. M. 1954. Succinoxidase system inAspergillus niger. Can. Jour. Microbiol.1: 6–11.

    CAS  Google Scholar 

  • -----, &P. W. Wilson. 1949. Assimilation of CO2 in citric acid production byAspergillus niger. (Abstr.) Soc. Amer. Bact., 49th Gen. Meeting, pp. 45–46.

  • —————, —————. 1950. Citric acid formation from C14O2 byAspergillus niger. Arch Biochem.26: 103–111.

    CAS  Google Scholar 

  • —————, & —————. 1951. Uptake of C14O2 byAspergillus niger in the formation of citric acid. Arch. Biochem. & Biophys.32: 150–157.

    Article  CAS  Google Scholar 

  • Massart, L. 1936. Oxygen pressure and cytochrome. Arch. Int. Pharmacodynamie53: 562–568.

    CAS  Google Scholar 

  • ————— 1938. The influence of increased oxygen tension on the respiration and fermentation of yeast. Arch. Int. Pharmacodynamie60: 48–55.

    CAS  Google Scholar 

  • Matkovics, P. 1960. Extreme values of atmospheric nitrogen fixation in yeasts isolated from root nodules ofLupinus luteus. Naturwissenschafften47: 92.

    Article  CAS  Google Scholar 

  • Matsumoto, T. 1921. Studies on the physiology of fungi. III. Physiological specialization inRhizoctonia solani Kühn. Ann. Missouri Bot. Gard.8: 1–62.

    Article  CAS  Google Scholar 

  • McClung, L. S. 1940. The use of dehydrated thioglycollate medium in the enrichment of spore-forming anaerobic bacteria. Jour. Bact.40: 645–648.

    CAS  Google Scholar 

  • —————. 1941. The anaerobic bacteria and their activities in nature and disease: a subject bibliography. Suppl. 1: Literature for 1938 & 1939. Univ. California Press, Berkeley, xxii + 244 pp.

    Google Scholar 

  • McCoy, E., E. B. Fred, W. H. Paterson, &E. G. Hastings. 1926 A cultural study of the acetone butyl alcohol organism. Jour. Infec. Dis.39: 457–483.

    Google Scholar 

  • —————, —————, —————, & —————. 1930. A cultural study of certain anaerobic butyric acid forming bacteria. Jour. Infec. Dis.46: 118–137.

    CAS  Google Scholar 

  • —————. 1939. The anaerobic bacteria and their activities in nature and disease: a subject bibliography. Univ. California Press, Berkeley, Vol. 1, xxiii + 295 pp; Vol. 2, xi + 602 pp.

    Google Scholar 

  • McCrea, A. 1931. Reaction ofClaviceps purpurea to variation of environment. Amer. Jour. Bot.18: 50–78.

    Article  Google Scholar 

  • McIntosh, J. 1917. The classification and study of anaerobic bacteria of war wounds, Great Britain. Med. Res. Council, Spec. Rep. Ser.12: 1–58.

    Google Scholar 

  • McKinney, R. E. 1962. Microbiology for sanitary engineers. McGraw-Hill Book Co., Inc., New York, xiv + 293 pp.

    Google Scholar 

  • McNutt, W. S., Jr. 1954. The direct contribution of adenine to the biogenesis of riboflavine byEremothecium ashbyii. Jour. Biol. Chem.210: 511–519.

    CAS  Google Scholar 

  • McVikar, D. L. 1942. The light controlled diurnal rhythm of asexual reproduction inPilobolus. Amer. Jour. Bot.29: 372–380.

    Article  Google Scholar 

  • Melhus, I. E., &L. W. Durrell. 1919. Studies on the crown rust of oats. Iowa Agr. Exp. Sta. Res. Bull.49: 114–144.

    Google Scholar 

  • Mel’nikova, A. A., &W. Butkevich. 1939. Biochemical formation of oxalic acid from sugar. Mikrobiologiya8: 818–826.

    CAS  Google Scholar 

  • Merzhanian, A. A., &E. M. Kozenko. 1957. Adsorption of carbon dioxide by wineyeast dispersions. Trudy Krasnodar. Inst. Pischevoi Prom.9: 51–54.

    CAS  Google Scholar 

  • Metcalfe, G., &S. Chayen. 1954. Nitrogen fixation by soil yeasts. Nature174: 841–842.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, K. F. 1928. Botulismus.In: “Handbuch der pathogene Mikroorganismen,’ ed. by W. Kolle, R. Krause, & P. Uhlenhuth, 3 Aufl.,4: 1269–2364.

    Google Scholar 

  • Miller, D. D., &N. S. Golding. 1949. The gas requirements of molds: V. THe minimum oxygen requirements for normal growth and for germination of six mold cultures. Jour. Dairy Sci.32: 101–110.

    Article  CAS  Google Scholar 

  • Miller, J. J. 1959. A comparison of the sporulation physiology of yeast and aerobic bacteria. Wallerstein Lab. Comm.22: 267–283.

    CAS  Google Scholar 

  • Minden, M. Von. 1916. Beiträge zur Biologie und Systematik einheimischer submerser Phycomyceten. Mykolog. Untersuch. Berichte (ed. by Falck)2: 146–255.

    Google Scholar 

  • Mitchell, R., &A. Alexander. 1962. Microbiological changes in flooded soils. Soil Sci.93: 413–419.

    Article  CAS  Google Scholar 

  • Moore, E. J. 1937. Carbon and oxygen requirements of the cotton root-rot organismPhymatotrichum omnivorum in culture. Phytopathology27: 918–930.

    CAS  Google Scholar 

  • Moran, T., E. C. Smith, &R. G. Tomkins. 1932. The inhibition of mold growth on meat by carbon dioxide. Jour. Soc. Chem. Ind.51: 114–116.

    CAS  Google Scholar 

  • Morton, A. G. 1961. The induction of sporulation in mold fungi. Proc. Roy. Soc. B153: 548–569.

    CAS  Google Scholar 

  • Mosback, E. H., E. F. Phares &S. F. Carson. 1952. The role of one-carbon compounds in citric acid synthesis. Arch. Biochem. & Biophys.35: 435–442.

    Article  Google Scholar 

  • Neal, D. C., &R. E. Wester. 1932. Effects of anaerobic conditions on the growth of the cotton rot fungusPhymatotrichum omnivorum. Phytopathology22: 917–920.

    Google Scholar 

  • Negroni, P. 1944. Estudios sobre la Penicilina. I. Influencia de algunas factores fisicos y químícas. Rev. Inst. Bacteriol. “Carlos G. Malbran” (Buenos Aires)12: 299–308.

    CAS  Google Scholar 

  • Neilson-Jones, W., &M. L. Smith. 1928. On the fixation of atmospheric nitrogen byPhoma radicis callunae, including a new method for investigating nitrogenfixation by microorganisms. Brit. Jour. Exp. Biol.6: 168–189.

    Google Scholar 

  • Nemeth, G. 1959. A new nitrogen-fixing organism producing a red pigment. Nature183: 1460.

    Article  PubMed  CAS  Google Scholar 

  • Newcombe, M. 1960. Some effects of water and anaerobic conditions onFusarium oxysporum f.cubense in soil. Trans. Brit. Mycol. Soc.43: 51–59.

    Google Scholar 

  • Niederpruem, D. J. 1963. Role of carbon dioxide in the control of fruiting ofSchizophyllum commune. Jour. Bact.85: 1300–1308.

    CAS  Google Scholar 

  • Noble, E. P., D. R. Reed, &C. H. Wang. 1958. Utilization of acetate, pyruvate, and carbon dioxide byPenicillium digitatum. Can. Jour. Microbiol4: 469–476.

    CAS  Google Scholar 

  • Noble, R. J. 1923. Studies onUrocystis tritici Koern, the organism causing flag smut of wheat. Phytopathology13: 127–139.

    Google Scholar 

  • Nord, F. F. &L. J. Sciarini. 1946. The mechanisms of enzyme action. XXVII. The action of certain wood destroying fungi on glucose, xylose, raffinose and cellulose. Arch. Biochem.9: 419–437.

    CAS  Google Scholar 

  • Novelli, G. D., &F. L. Lipmann. 1950. The catalytic function of coenzyme A in citric acid synthesis. Jour. Biol. Chem.182: 213–228.

    CAS  Google Scholar 

  • Ochoa, S. 1945. Isocitric dehydrogenase and carbon dioxide fixation. Jour. Biol. Chem.159: 243–244.

    CAS  Google Scholar 

  • Ogston, A. G. 1948. Interpretation of experiments on metabolic processes using isotopic tracer elements. Nature162: 963.

    Article  PubMed  CAS  Google Scholar 

  • Olson, J. A. 1954. The d-isocitric lyase system: the formation of glyoxylic and succinic acids from d-isocitric acid. Nature174: 695–696.

    Article  CAS  Google Scholar 

  • Orland, H. P. (ed.) 1965. Standard methods for the examination of water and waste water. 12th Ed.. Amer. Publ. Health Assoc., New York, xxxi + 769 pp.

    Google Scholar 

  • Ough, C. S., &M. A. Amerino. 1958. Aldehyde production under pressure, oxygen and agitation. Amer. Jour. Enology9: 111–122.

    CAS  Google Scholar 

  • Oyaas, J., M. J. Johnson, W. H. Peterson, &R. Irvin. 1948. Effect of oxygen or retention of activity by commercial dried baker’s yeast. Ind. Eng. Chem.40: 280–283.

    Article  CAS  Google Scholar 

  • Papavizas, G. C., &C. V. Davey. 1962. Activity ofRhizoctonia in soil as affected by carbon dioxide. Phytopathology52: 754–766.

    Google Scholar 

  • Pardee, A. B. 1949. Measurement of oxygen uptake under controlled pressure of carbon dioxide. Jour. Biol. Chem.179: 1085–1091.

    CAS  Google Scholar 

  • Park, D. 1961. Isolation ofFusarium oxysporum from soils. Trans. Brit. Mycol. Soc.44: 119–122.

    Google Scholar 

  • Parker, C. A. 1955. Anaerobiosis with iron wool. Australian Jour. Exp. Biol.33: 33–38.

    Article  CAS  Google Scholar 

  • Pasteur, L. 1879. Studies on fermentation. MacMillan & Co., London, xvi + 418 pp.

    Google Scholar 

  • Pennington, L. H. 1908. Can fusaria assimilate free nitrogen? (Abstr.) Mich. Acad. Sci. 10th Ann. Rep.

  • ————— 1911. Upon assimilation of atmospheric nitrogen by fungi. Bull. Torrey Bot. Club38: 135–139.

    Article  CAS  Google Scholar 

  • Perlman, D. 1948. The nutrition ofMennoniella echinata andStachybotrys atra. Amer. Jour. Bot.35: 36–41.

    Article  CAS  Google Scholar 

  • Peterson, A., V. Schlegel, B. Hummel, L. S. Cuendet, W. F. Geddes, &C. M. Christensen. 1956. Grain-storage studies. XXII. Influence of oxygen and carbon dioxide concentrations on mold growth and grain determioration. Cereal Chem.33: 53–66.

    CAS  Google Scholar 

  • Pine, L. 1954. Studies on the growth ofHistoplasma capsulatum. I. Growth of the yeast phase in liquid media. Jour. Bact.68: 671–679.

    CAS  Google Scholar 

  • Plantefol, L. 1935a. Effect of oxygen tension on the gas exchange of yeast. Fermentation proper in yeast. Ann. Physiol. Physicochem. Biol.11: 243–261.

    CAS  Google Scholar 

  • ————— 1935b. The effect of 2,4-dinitrophenol on the cellular oxidations of yeast. Ann. Physiol. Physicochem. Biol.11: 32–53.

    CAS  Google Scholar 

  • Platz, G. A. 1928. The relation of oxygen to the germination of the chlamydospores ofUstilago zeae (Beck.) Unger. Iowa State Coll. Jour. Sci.2: 137–144.

    CAS  Google Scholar 

  • —————. 1927. Effect of carbon dioxide upon the germination of chlamydospores ofUstilago zeae (Beckm.) Ung. Jour. Agr. Res.34: 137–147.

    CAS  Google Scholar 

  • Plaut, G. W. E. 1954. Biosynthesis of riboflavine. I. Incorporation of C14-labeled compounds into rings B and C. Jour. Biol. Chem.208: 513–520.

    CAS  Google Scholar 

  • Plunkett, B. E. 1954. The aeration complex of factors and fruit-body formation in pure cultures of Hymenomycetes. VIII Congr. Int. Bot., Paris, Rapp. & Comm. Sec. 18–20, pp. 101–102.

  • ————— 1956. The influence of factors of the secretion complex and light upon fruit body formation in pure cultures of an agaric and a polypore. Ann. Bot. (London) N.S.20: 563–586.

    Google Scholar 

  • Polonovski, M. 1947. Initial steps in biogenesis of organic compounds. Exposés Ann. Biochem. Méd.7: 267–285.

    CAS  Google Scholar 

  • Porodko, T. 1904. Studien uber den Einfluss der Sauerstoffspannung auf pflanzliche Microorganismen. Jahrb. Wiss. Bot.41: 1–64.

    Google Scholar 

  • Preston, A., &E. I. McLennan. 1948. The use of drugs in culture media for distinguishing between brown and white wood-rotting fungi. Amer. Jour. Bot.12: 53–64.

    Google Scholar 

  • Puriewitsch, K. 1895. Uber die Stickstoffassimilation bei den Schimmelpilzen. Ber. Deut. Bot. Ges.13: 342–348.

    Google Scholar 

  • Ramakrishnan, C. V. 1954. Tricarboxylic acid cycle inAspergillus niger. Enzymologia17: 169–174.

    PubMed  CAS  Google Scholar 

  • —————. 1954 Enzymic synthesis of citric acid by cell-free extracts ofAspergillus niger. Can. Jour. Biochem. & Physiol.32: 434–439.

    CAS  Google Scholar 

  • —————, & —————. 1955. Isocitric dehydrogenase inAspergillus niger. Arch. Biochem. & Biophys.55: 403–407.

    Article  CAS  Google Scholar 

  • Ranzoni, F. V. 1951. Nutrient requirements for two species of aquatic Hyphomycetes. Mycologia53 (2): 130–141.

    Article  Google Scholar 

  • Paper, K. 1962. General methods for preserving cultures. In: “Culture Collections: Perspectives and Problems,” ed. by S. M. Martin, Proc. Specialists Conf. Culture Coll., Ottawa, Canada; Univ. Toronto Press, 221 pp. (pp. 81–93.)

    Google Scholar 

  • Rayner, M. C. 1922. Nitrogen fixation in Ericaceae. Bot. Gaz.73: 226–235.

    Article  CAS  Google Scholar 

  • -----. 1927. Mycorrhiza. New Phytol., Reprint 15.

  • ————— 1929. Biology of fungus infection in the genusVaccinium. Ann. Bot. (London)43: 55–70.

    Google Scholar 

  • Reed, G. B., &J. H. Orr. 1941. Rapid identification of gas gangrene anaerobes. War Medicine1: 493–510.

    Google Scholar 

  • Reed, H. S., & C. H. Crabill. 1915. The cedar rust diseases of apples caused byGymnosporangium juniperi-virginianae Schw. Virginia Agr. Exp. Sta. Tech. Bull. No. 9, 106 pp.

  • Reyes, R. J., &J. R. Neville. 1963. Cellular oxygen consumption at low oxygen tensions. Aerospace Med.34: 1103–1106.

    CAS  Google Scholar 

  • Rippel, A., &H. Bortels. 1927. Vorlaufige Über die allgemeine Bedeutung der Kohlensaure für die Pflanzenzelle. (Versuche anAspergillus niger.) (Preliminary report on the general significance of carbon dioxide for the plant cell. [Experiments onAspergillus niger.]) Biochem. Zeitschr.184: 237–244.

    Google Scholar 

  • —————, 1930. Action of carbon dioxide on heterotrophs. Arch. Mikrobiol.1:119–136.

    Article  CAS  Google Scholar 

  • Robbins, W. J. 1937. The assimilation by plants of various forms of nitrogen. Amer. Jour. Bot.24: 243–250.

    Article  CAS  Google Scholar 

  • Roberg, M. 1932. Assimilation of nitrogen byAspergillus. Zentralbl. Bakt. II.86: 466–479.

    CAS  Google Scholar 

  • Roberts, E. R., &T. G. G. Wilson. 1954. Nitrogen fixation by soil yeasts. Nature174: 842.

    Article  CAS  Google Scholar 

  • Robertson, N. F. 1958. Observation on the effect of water on the hyphal apices ofFusarium oxysporum. Ann. Bot. (London) N.S.22: 159–173.

    Google Scholar 

  • Robinson, W. 1926. The conditions of growth and development ofPyronema confluens Tul. (P. omphalodes [Bull.] Fckl.). Ann. Bot. (London) N.S.40: 245–272.

    Google Scholar 

  • Rockwell, E., &J. H. Highberger. 1927. The necessity of carbon dioxide for the growth of bacteria, yeasts and molds. Jour. Infec. Dis.40: 438–446.

    CAS  Google Scholar 

  • Romano, A. H. 1966. Dimorphism. In: “The Fungi,” ed. by G. C. Ainsworth and A. S. Sussman, Vol. II., pp. 181–209.

    Google Scholar 

  • Rotini, O. T., E. Dammann, &F. F. Nord. 1936. Mechanism of the enzyme action. XIV. Dehydrogenation byFusarium lini Bolley. Biochem. Zeitschr.288: 414–420.

    CAS  Google Scholar 

  • Ruyle, E. H., W. E. Pearce, &G. L. Hays. 1946. Prevention of mold in kettled blue berries in No. 10 cans. Food Research11: 274–279.

    CAS  Google Scholar 

  • Saida, K. 1901. Uber die Assimilation freien Stickstoffs durch Schimmelpilze. Ber. Deut. Bot. Ges.19: 107–115.

    Google Scholar 

  • Saito, K. 1911. Production of lactic acid by molds. Centralbl. Bakt. II.29: 289–290.

    Google Scholar 

  • Sakaguchi, K., &T. Inoue. 1940. Formation of ethylene oxide-α, β-dicarboxylic acid by molds. Jour. Agr. Chem. Soc. Japan16: 1015–1016.

    Google Scholar 

  • Salvin, S. B. 1949. Cysteine and related compounds in the growth of the yeast-like phase ofHistoplasma capsulatum. Jour. Infec. Dis.84: 275–283.

    CAS  Google Scholar 

  • Sartory, A., R. Sartory, &J. Meyer. 1936. Effect of pressure or partial vacuum on the biochemical behaviour of some lower fungi. Compt. Rend. Acad. Sci. (Paris)203: 1289–1291.

    CAS  Google Scholar 

  • Schaffnit, E. 1926. Zur Physiologie vonUstilago hordei Kell. u. Sur. Ber. Deut. Bot. Ges.44: 151–156.

    Google Scholar 

  • Schanderl, H. 1942a. Elementary atmospheric nitrogen in the nitrogen economy of yeast. Wochenschr. Brau.59: 59–61.

    CAS  Google Scholar 

  • ————— 1942b. Assimilation of elemental nitrogen of the air by the yeast symbionts ofRhagium inquisitor. Zeitschr. Morphol. & Ökol. Tiere38: 526–533.

    Article  CAS  Google Scholar 

  • Scheffer, E., &E. Kuster. 1950. Investigations of nitrogen fixation by film-forming yeast. Zeitschr. Pflanzenernähr., Düngung, Bodenkunde51: 224–228.

    Article  CAS  Google Scholar 

  • Scheffer, T. C., &B. E. Livingston. 1937. Relation of oxygen pressure and temperature to growth and carbon dioxide production in the fungusPolystictus versicolor. Amer. Jour. Bot.24: 109–119.

    Article  CAS  Google Scholar 

  • Schelhorn, M. von. 1951. Control of microorganisms causing spoilage in fruit and vegetable products. Advances in Food Research3: 429–482.

    Google Scholar 

  • Schlegel, N. G. 1963. Carbon dioxide in the metabolism of microorganisms. Zentralbl. Bakt. I. Orig.191: 177–190.

    CAS  Google Scholar 

  • Schmidt, L. H. 1935. The phospholipid content of liver, skeletal muscle and whole blood as affected by thyroxine injections. Amer. Jour. Physiol.111: 138–144.

    CAS  Google Scholar 

  • Schober, R. 1930. Luftstickstoffassimilation und saurebildung beiAspergillus niger. Jahrb. Wiss. Bot.72: 1–105.

    Google Scholar 

  • Schormueller, J. 1964. CO2 fixation byPenicillium camemberti var.candidum. Nahrung8: 1–11.

    Article  CAS  Google Scholar 

  • —————. 1961. Metabolism tests of microorganisms significant in food technology. IV. Carbon dioxide in metabolism ofPenicillium camemberti var.candidum. Zeitschr. Lebensm.-Untersuch. & -Forsch.115: 539–544.

    Article  CAS  Google Scholar 

  • Schroder, M. 1931. The fixation of atmospheric nitrogen byAspergillus niger. Jahrb. Wiss. Bot.75: 377–398.

    Google Scholar 

  • Senn, G. 1928. The assimilation of the molecular nitrogen of the air by lower plants, especially by fungi. Biol. Rev. Cambridge Philos. Soc.3: 77–91.

    Article  CAS  Google Scholar 

  • Sereni, D. R. 1931. Stimulating action of carbon dioxide on the germination of the spores ofDeuterophoma tracheiphyla. Boll. R. Staz. Patol. Veg. (Roma), N.S.11: 143–151.

    CAS  Google Scholar 

  • Sherwood, R. T., &D. J. Hagedorn. 1961. Effect of O2 tension on growth ofAphanomyces euteiches. Phytopathology51: 492–493.

    Google Scholar 

  • Shibata, K., &H. Tamiya. 1930. [The meaning of the cytochromes in the physiology of cell respiration.] Acta Phytochim. (Japan)5: 23–97.

    CAS  Google Scholar 

  • Shu, P. 1953. Oxygen uptake in shake flask fermentations. Jour. Agr. Food Chem.1: 1119–1123.

    Article  CAS  Google Scholar 

  • —————. 1948. Citric acid production by submerged fermentation withAspergillus. Ind. Eng. Chem.40: 1202–1205.

    Article  CAS  Google Scholar 

  • Sibilia, C. 1928. Ricerche sulle ruggini dei cereali. Boll. R. Staz. Patol. Veg. (Roma), N.S.88: 235–247.

    Google Scholar 

  • Siepmann, R., &T. W. Johnson, Jr. 1960. Isolation and culture of fungi from wood submerged in saline and fresh waters. Jour. Elisha Mitchell Sci. Soc.76: 150–154.

    Google Scholar 

  • Skinner, C. E., C. W. Emmons, &H. M. Tsuchiya. 1947. Henrici’s molds, yeasts, and actinomycetes. Ed. 2. John Wiley & Sons, Inc., New York, xiv + 409 pp.

    Google Scholar 

  • Skovholt, O. 1933. The influence of humidity and carbon dioxide upon the development of molds in bread. Cereal Chem.101: 446–451.

    Google Scholar 

  • Smedley-McLean, I., &D. Hoffert. 1926. Carbohydrate and fat metabolism of yeast. III. Nature of intermediate stages. Biochem. Jour.20: 343–357.

    Google Scholar 

  • Smith, G. 1946. An introduction to industrial mycology. 3rd ed. Edward Arnold and Co., London, xiv + 271 pp.

    Google Scholar 

  • Snell, E. E. 1951. Bacterial nutrition—chemical factors.In: “Bacterial Physiology,” ed. by C. H. Werkman & P. W. Wilson, Academic Press, New York, pp. 214–255.

    Google Scholar 

  • Snell, W. H., &E. A. Dick. 1957. A glossary of mycology. Harvard Univ. Press, Cambridge, xxxi + 171 pp.

    Google Scholar 

  • Snider, P. J. 1959. Stages of development in rhizomorphic thalli ofArmillaria mellea. Mycologia51: 693–707.

    Article  Google Scholar 

  • Sfray, R. S. 1936. Semisolid media for cultivation and identification of the sporulating anaerobes. Jour. Bact.32: 135–155.

    Google Scholar 

  • Stanek, M. 1963. [Germination of chlamydospores ofUstilago maydis in the corn rhizosphere.] Ustav Vedeckotech. Inform., Minist. Zemed., Lesn. & Vodn. Hospod. Rostlinná Výroba9: 721–725.

    CAS  Google Scholar 

  • Staples, R. C., &L. H. Weinstein. 1959. Dark carbon dioxide fixation by uredospores of rust fungi. Contrib. Boyce Thompson Inst.20: 71–82.

    CAS  Google Scholar 

  • Stefaniak, J. J., F. B. Gailey, F. G. Jarvis, &M. J. Johnson. 1946. The effect of environmental conditions on penicillin fermentations withPenicillium chrysogenum. Jour. Bact.52: 119–127.

    CAS  Google Scholar 

  • Steinberg, R. A. 1939. Growth of fungi in synthetic nutrient solutions. Bot. Rev.5: 327–350.

    CAS  Google Scholar 

  • ————— 1942. Influence of carbon dioxide in response ofAspergillus niger to trace elements. Plant Physiol.17: 129–132.

    PubMed  CAS  Google Scholar 

  • ————— 1950. Growth of fungi in synthetic nutrient solutions. II. Bot. Rev.16: 208–228.

    CAS  Google Scholar 

  • Stier, T. J. B. 1939. Carbohydrate and lipid assimilation in bakers’ yeast. Cold Spring Harbor Symp. Quant. Biol.7: 385–393.

    CAS  Google Scholar 

  • —————. 1949. Nutrient limited anaerobic growth of yeast at high temperatures. Jour. Cell. & Comp. Physiol.33: 446–448.

    Article  CAS  Google Scholar 

  • —————, —————. 1950. An all glass apparatus for the continuous cultivation of yeast under anaerobic conditions. Jour. Bact.59: 45–49.

    CAS  Google Scholar 

  • —————, —————. 1950. Edible oils as sources of lipid anaerobic growth factors for distillers’ yeast. Jour. Cell. & Comp. Physiol.36: 159–164.

    Article  CAS  Google Scholar 

  • Stock, T. 1931. Untersuchungen uber Keimung und Keimschlauchwachstum der Uredosporen einiger Getreideroste. Phytopath. Zeitschr.3: 231–239.

    Google Scholar 

  • Stockhausen, F., &F. Windisch. 1928. Fermentation carbon dioxide. Wochenschr. Brau.45: 277–281, 289–298, 305–311, 317–324, 329–333.

    CAS  Google Scholar 

  • Stoller, B. B. 1952. Abnormal growth and fructification of the cultivated mushroom. Science116: 320–322.

    Article  PubMed  CAS  Google Scholar 

  • Stoppani, A. O. M., L. Conches, S. L. S. de Favelukes, &F. L. Sacerdote, 1958a. Assimilation of carbon dioxide by yeast. Biochem. Jour.70: 438–455.

    CAS  Google Scholar 

  • —————. 1958b. The function of the citric acid cycle inSaccharomyces cerevisiae. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy (Geneva)25: 12–20.

    Google Scholar 

  • —————, —————, —————. 1957. Mechanism of carbon dioxide fixation bySaccharomyces cerevisiae. Biochim. & Biophys. Acta26: 443–445.

    Article  CAS  Google Scholar 

  • Stotzky, G. A. 1960. A simple method for the determination of the respiratory quotient of soils. Can. Jour. Microbiol.6: 439–452.

    CAS  Google Scholar 

  • —————. 1965. Effect of high carbon dioxide and low oxygen tensions on soil microbiota. Can. Jour. Microbiol.11: 853–868.

    CAS  Google Scholar 

  • —————, & —————. 1966. Adaptation of the soil microbiota to high CO2 and low O2 tensions. Can. Jour. Microbiol.12(4): 849–861.

    CAS  Google Scholar 

  • —————, —————. 1962. Microbial changes occurring in soils as a result of storage. Plant & Soil16: 1–19.

    Article  Google Scholar 

  • —————. 1961. Factors limiting microbial activities in soil I and II. Arch. Microbiol.40: 344–382.

    Google Scholar 

  • Stover, R. H. 1953. Measurement of colonization and survival of soil fusaria in detached plant tissue. Nature172: 465.

    Article  PubMed  CAS  Google Scholar 

  • ————— 1954. Flood fallowing for eradication ofFusarium oxysporum f.cubense. II. Some factors involved in fungus survival. Soil Sci.77: 401–414.

    Article  CAS  Google Scholar 

  • ————— 1955. Flood fallowing for eradication ofFusarium oxysporum f.cubense. III. The effect of oxygen on fungus survival. Soil Sci.80: 397–412.

    Article  CAS  Google Scholar 

  • ————— 1958. Studies on Fusarium wild of bananas. II. Some factors influencing survival and saprophytic multiplication ofFusarium oxysporum f.cubense in soil. Can. Jour. Bot.36: 311–324.

    Google Scholar 

  • ————— 1962. Fusarial wilt (Panama disease) of bananas and otherMusa species. Commonwealth Mycol. Inst. Phytopath. Paper4: 1–117.

    Google Scholar 

  • —————. 1958. Effect of carbon dioxide on multiplication ofFusarium in soil. Nature181: 788–789.

    Article  CAS  Google Scholar 

  • —————. 1953. Flood fallowing for eradication ofFusarium oxysporum f.cubense. I. Effect of flooding on fungus flora of clay worn soils in Ulua Valley, Honduras. Soil Sci.76: 225–238.

    Article  Google Scholar 

  • —————. 1953. An improved method of isolatingFusarium spp. from plant tissue. Phytopathology43: 700–701.

    Google Scholar 

  • Strauss, B. S. 1956. The nature of the lesion in the succinate requiring mutants ofNeurospora crassa. Interaction between carbohydrate and nitrogen metabolism. Jour. Gen. Microbiol.14: 494–511.

    CAS  Google Scholar 

  • ————— 1957. Oxalacetic carboxylase deficiency of the succinate requiring mutants ofNeurospora crassa. Jour. Biol. Chem.225: 535–544.

    CAS  Google Scholar 

  • Stuart, B., R. Gerschman, &J. N. Stannard. 1962. Effect of high oxygen tension on potassium retentivity and colony formation of baker’s yeast. Jour. Gen. Physiol.45: 1019–1030.

    Article  CAS  Google Scholar 

  • Sussman, A. S., J. R. Distler, &J. S. Krakow. 1956. Metabolic aspects ofNeurospora activation and germination. Plant Physiol.31: 126–135.

    PubMed  CAS  Google Scholar 

  • —————. 1966. Spores, their dormancy and germination. Harper & Row Publishers, Inc., New York, xi + 354 pp.

    Google Scholar 

  • Suzuki, H. 1939. Influence of physical and chemical factors upon the formation of appressoria in the conidia ofPiricularia Oryzae. I. Influence of oxygen. Jap. Jour. Bot.10: 321–324.

    CAS  Google Scholar 

  • Taber, W. A., &L. L. Vining. 1957. A nutritional study of three strains ofClaviceps purpurea. Can. Jour. Microbiol.3: 1–12.

    Article  CAS  Google Scholar 

  • Takahashi, T., &T. Asai. 1932. Gluconic acid fermentation. IV.Bacterium hoshigaki var.Glucuronicum II and III Nov. sp. Jour. Agr. Chem. Soc. Japan8: 652–658.

    CAS  Google Scholar 

  • Tamiya, H. 1929a. Metabolism ofAspergillus oryzeae. III. Acta Phytochim. (Japan)4: 227–295.

    CAS  Google Scholar 

  • ————— 1929b. Reductase and glutathione in molds. Acta Phytochim. (Japan)4: 297–311.

    CAS  Google Scholar 

  • ————— 1932. Physiology of the respiration of molds. I. Theory of the respiratory quotient. Influence of the oxidation-reduction processes upon gas production of the cells. Acta Phytochim. (Japan)6: 227–263.

    CAS  Google Scholar 

  • ————— 1942. Atmung, Garung und die sich garan beteiligenden Enzyme vonAspergillus. (The enzymes ofAspergillus responsible for respiration and fermentation.) Advances in Enzymology2: 183–238.

    Article  CAS  Google Scholar 

  • Ternetz, C. 1900. Protoplasma bewegung und Furchtkorperbildung beiAscophanus carneus Pers. Jahrb. Wiss. Bot.35: 273–321.

    Google Scholar 

  • ————— 1904. Die Assimilation des atmosphaerischen Stickstoffes durch einen torfbewonenden Pilz. Ber. Deut. Bot. Ges.22: 267–274.

    Google Scholar 

  • ————— 1907. Ueber die Assimilation des atmosphaerischen Stickstoff durch Pilze. Jahrb. Wiss. Bot.44: 353–408.

    Google Scholar 

  • Terroine, E. F., &R. Bonnet. 1927. Energy of growth. X. Formation of fats at the expense of sugars in microorganisms. Bull. Soc. Chim. Biol.9: 588–596.

    CAS  Google Scholar 

  • Thacker, D. C., &H. M. Good. 1952. The composition of air in trunks of sugar maple in relation to decay. Can. Jour. Bot.30: 475–485.

    CAS  Google Scholar 

  • Thom, C., &J. N. Currie. 1913. The dominance of Roquefort mold in cheese. Jour. Biol. Chem.15: 249–258.

    CAS  Google Scholar 

  • Thornton, N. C. 1934. Carbon dioxide storage. VI. Lowering the acidity of fungal hyphae by treatment with carbon dioxide. Contrib. Boyce Thompson Inst.6: 395–402.

    CAS  Google Scholar 

  • Tomkins, R. G. 1932a. Measuring the growth of fungi by the Petri dish method. Trans. Brit. Mycol. Soc.11: 150–153.

    Google Scholar 

  • ————— 1932b. The inhibition of the growth of meat-attacking fungi by carbon dioxide. Jour. Soc. Chem. Ind.51: 361–364.

    Article  CAS  Google Scholar 

  • ————— 1938. Inhibitory effect of carbon dioxide on the growth of molds. Rep. Food Investig. Board (DSIR, New Zealand)1937: 30–34.

    Google Scholar 

  • Tomlinson, T. G. 1937. Anaerobic metabolism of the mould fungi in relation to citric acid formation. New Phytol.36: 418–434.

    Article  CAS  Google Scholar 

  • Tove, S. R., H. F. Niss, & P. W. Wilson. 1949. Nitrogen fixation by the fungusPhoma casuarina. Soc. Amer. Bact. 49th Meet. Abstracts, p. 59.

  • Tremaine, J. H., &J. J. Miller. 1953. Effect of six vitamins on ascospore formation by an isolate of baker’s yeast. Bot. Gaz.115: 311.

    Article  Google Scholar 

  • Tschesnokov, W. 1932. Der Chemismus der Oxalsäurebildung auf Zuckerkulturen. Mikrobiologiya1: 390–398.

    Google Scholar 

  • Tschierpe, H. J., &J. W. Sinden. 1964. Weitere Untersuchungen uber die Bedeutung von Kohlendioxyd fur die Fruktifikation des Kulturchampignons,Agaricus campestris var.bisporus (L.) Lge. Arch. Microbiol.49: 405–425.

    CAS  Google Scholar 

  • Umbreit, W. W., R. H. Burris, &J. F. Stauffer, 1957. Manometric techniques. (Third Edition.) Burgess Publishing Co., Minneapolis, 338 pp.

    Google Scholar 

  • Uppal, B. N. 1924. Spore germination ofPhytophthora infestans. Phytopathology14: 32–33.

    Google Scholar 

  • ————— 1926. Relation of oxygen to spore germination in some species of Peronosporales. Phytopathology16: 285–292.

    Google Scholar 

  • Utter, M. F., &H. G. Wood. 1951. Mechanisms of fixation of carbon dioxide by heterotrophs and autotrophs. Advances in Enzymology12: 41–151.

    Article  CAS  Google Scholar 

  • Vakil, J. R., &P. K. Battacharyya. 1962. Role of carbon dioxide in citric acid fermentation. II. Effect of carbon dioxide tension on the production of citric acid. Jour. Sci. Ind. Res.21C: 202–206.

    CAS  Google Scholar 

  • —————. 1961. Effect of carbon dioxide on the germination of conidiospores ofAspergillus niger. Arch. Mikrobiol.39: 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Van Beverwijk, A. L. 1951. Zaleski’s “Clathrosphaera spirifera.” Trans. Brit. Mycol. Soc.34: 280–290.

    Google Scholar 

  • Vernon, T. R. 1934. The deterioration of dairy products by moulds. New Zealand Jour. Sci. & Technol.15: 237–247.

    Google Scholar 

  • Veselov, I. Y., &V. N. Shil. 1959. Growth of yeasts and their fermentation energy in an extended series of transplants with deaerated wort, saturated with carbon dioxide, and with small initial seedings. Trudy Vsesoyuz. Nauch.-Issled. Inst. Pivovar. Prom1959(7): 82–89.

    Google Scholar 

  • Vladimirskaya, N. N. 1954. Oxygen in germination of resting sporangia ofSynchytrium endobiotica. Mikrobiologiya23: 72–75.

    CAS  Google Scholar 

  • Waid, J. S. 1962. Influence of oxygen upon growth and respiratory behavior of fungi from decomposing rye-grass roots. Trans. Brit. Mycol. Soc.45: 479–487.

    CAS  Google Scholar 

  • Waksman, S. A., &J. W. Foster. 1938. Respiration and lactic acid production by a fungus of the genusRhizopus. Jour. Agr. Res.57: 873–899.

    CAS  Google Scholar 

  • —————. 1937. Lactic acid production of species ofRhizopus. Jour. Amer. Chem. Soc.59: 545–547.

    Article  CAS  Google Scholar 

  • Walker, D. A. 1960. Physiological studies on acid metabolism. VII. Malic enzyme fromKalanchoë irenata: effects of CO2 concentration. Biochem. Jour.74: 216–223.

    CAS  Google Scholar 

  • Wang, Y. 1941. Fumaric acid fermentation by a mold of the genusRhizopus. Jour. Shanghai Sci. Inst. N.S.1: (Abstracts in English, pp. 177–178).

    Google Scholar 

  • Ward, G. E., L. B. Lockwood, O. E. May, &H. T. Herrick. 1936. Biochemical studies in the genusRhizopus. I. The production of d-lactic acid. Jour. Amer. Chem. Soc.58: 1286–1288.

    Article  CAS  Google Scholar 

  • —————, —————. 1938. Fermentation process for dextrolactic acid. Ind. Eng. Chem.30: 1233–1235.

    Article  CAS  Google Scholar 

  • Ward, H. M. 1887. Illustrations of the structure and life history ofPhytophthora infestans, the fungus causing the potato disease. Quart. Jour. Microscop. Soc. (London)27: 413–425.

    Google Scholar 

  • Weinberg, M., R. Nativelle, &A. R. Prévot. 1937. Les microbes anaérobies. Masson & Cie., Paris, 1186 pp. (p. 22).

    Google Scholar 

  • Weimer, J. Le R. 1917. Three cedar apple rust fungi, their life histories, and the diseases they produce. Cornell Univ. Agr. Exp. Sta. Bull.390: 509–549.

    Google Scholar 

  • Werkman, C. H., &H. C. Wood. 1942. Heterotrophic assimilation of carbon dioxide. Advances in Enzymology2: 135–182.

    Article  CAS  Google Scholar 

  • Wildman, J. D. 1944. Laboratory studies on development of mold in cream. Jour. Assoc. Offic. Agr. Chem.24: 183–190.

    Google Scholar 

  • Wilkins, W. H. 1938. Studies in the genusUstulina with special reference to parasitism. III. Spores—germination and infection. Trans. Brit. Mycol. Soc.22: 47–83.

    CAS  Google Scholar 

  • Will, H. 1921. Einige Mitteilungen über die Beeinflussung des Sporenbildungsvermögens durch das Auftragen der Hefe auf den trockenen Gipsblock. Centralbl. Bakt. II.54: 471–480.

    Google Scholar 

  • Williams, C. C., E. J. Cameron, &O. B. Williams. 1941. A facultatively anaerobic mold of unusual heat resistance. Food Research6: 69–73.

    Google Scholar 

  • Williams, J. W. 1938a. The difference in growth of pathogenic fungi with variation of medium and oxygen tension. Jour. Lab. & Clin. Med.24: 39–43.

    Google Scholar 

  • ————— 1938b. Effect of oxygen tension on site of growth of microorganisms, with special reference to pathogenic fungi. (Abstr.) Jour. Bact.35: 9.

    CAS  Google Scholar 

  • ————— 1939. Growth of microorganisms in shake cultures under increased oxygen or carbon dioxide tensions. Growth3: 21–33.

    CAS  Google Scholar 

  • Wilson, E. M. 1960. Physiology of an isolate ofFusarium oxysporum f.cubense. Phytopathology50: 607–612.

    CAS  Google Scholar 

  • Wilson, P. M. 1952. The comparative fixation of nitrogen fixation. Advances in Enzymology13: 345–375.

    Article  CAS  Google Scholar 

  • Wilson, P. W. 1951. Biological nitrogen fixation.In: “Bacterial Physiology,” ed. by C. H. Werkman & P. W. Wilson, Academic Press, New York, 707 pp. (pp. 467–499.)

    Google Scholar 

  • Windisch, F. 1930. Effect of high pressures of CO2 on yeast fermentation. Wochenschr. Brau.47: 82–83.

    CAS  Google Scholar 

  • ————— 1932. The importance of oxygen for yeast and for its biochemical functions. Biochem. Zeitschr.246: 332–382.

    CAS  Google Scholar 

  • ————— 1933. Effect of oxygen on alcoholic fermentation by yeasts. Ann. Brass. & Distill.31: 257–258.

    CAS  Google Scholar 

  • Winogradsky, S. N. 1900. Recherches sur l’assimilation de l’azote libre de l’atmosphère par les microbes. Archiv. Sci. Biol.8 (4).

  • ————— 1904. Die Nitrification.In: “Handbuch der technischen Mykologie,” ed. by F. Lafar, Gustav Fischer, Jena,3: 132–181.

    Google Scholar 

  • Winzler, R. J. 1941. The respiration of baker’s yeast at low oxygen tension. Jour. Cell. & Comp. Physiol.17: 263–276.

    Article  CAS  Google Scholar 

  • Witt, I., P. G. Weiler, &H. Holzer. 1964. Increased carbon dioxide fixation by ammonium salts in yeasts oxidizing glucose. Biochem. Zeitschr.339: 331–337.

    CAS  Google Scholar 

  • Wolff, H. 1926. Zur Physiologie der Wurzelpilze vonNeottia nidus-avis Rich. und einigen gruen Orchideen. Jahrb. Wiss. Bot.66: 1–34.

    Google Scholar 

  • ————— 1932. Zur Assimilation atmospharischen Stickstoffs durch die Wurzelpilze vonCorallorrhiza innata R. Br. sowie der EpiphytenCattleya bowringiana Veit undLaelia anceps Lindl. Jahrb. Wiss. Bot.77: 657–684.

    Google Scholar 

  • Wood, H. G., &M. F. Utter. 1965. The role of carbon dioxide fixation in metabolism. Essays in Biochem.I, 1–27.

    Google Scholar 

  • —————. 1941. Mechanism of fixation of carbon dioxide in the Krebs cycle. Jour. Biol. Chem.139: 483–484.

    CAS  Google Scholar 

  • Wood-Baker, A. 1955. Effects of oxygen-nitrogen mixtures on the spore germination of mucoraceous moulds. Trans. Brit. Mycol. Soc.38: 291–297.

    Article  CAS  Google Scholar 

  • Woolman, H. M., & H. B. Humphrey. 1924. Studies in the physiology and control of bunt, or stinking smut, of wheat. U.S. Dep. Agr. Bull. No. 1239, 29 pp.

  • Woronick, C. L. 1959. Carbon dioxide fixation by cell free extracts ofAspergillus niger. Diss. Abstr.20: 486.

    Google Scholar 

  • —————. 1960. Carbon dioxide fixation by cell free extracts ofAspergillus niger. Jour. Biol. Chem.235: 9–15.

    CAS  Google Scholar 

  • Yanagita, T. 1957. Biochemical aspects of germination ofAspergillus niger conidiospores. Arch. Mikrobiol.26: 329–344.

    Article  PubMed  CAS  Google Scholar 

  • ————— 1963. Carbon dioxide fixation in germinating conidiospores ofAspergillus niger. Jour. Gen. Appl. Microbiol. (Tokyo)9: 343–351.

    Article  CAS  Google Scholar 

  • Yirgou, D., &R. M. Caldwell. 1963. Stomatal penetration of wheat seedlings by stem and leaf rust: effect of light and carbon dioxide. Science141: 272–273.

    Article  PubMed  CAS  Google Scholar 

  • Yoshii, H. 1935. Pathological studies on water melon wilt. V. Metabolism ofFusarium niveum, with special reference to its gas evolution. (English summary.) Bull. Sci. Fak. Terkultura, Kjusu Imp. Univ. (Japan)6: 312–330.

    CAS  Google Scholar 

  • Zalokar, M. 1954. Studies on biosynthesis of carotenoids inNeurospora crassa. Arch. Biochem. & Biophys.50: 71–80.

    Article  CAS  Google Scholar 

  • Zeissler, J. 1930. Anaerobenzuchtung.In: “Handbuch der pathogenen Mikroorganismen,” ed. by W. Kolle, R. Krause, und P. Uhlenhuth, 3 Aufl.10: 35–144.

    Google Scholar 

  • —————. 1928. Die anaerobe Sporenflora der europaischen Kriegsschauplatze, 1917. Veröff. Kriegs- & Konstitutionspathol.5(2): 1–99.

    Google Scholar 

  • Zhuravskii, G. I. 1939. The gas exchange inAspergillus niger during the formation of citric acid. Mikrobiologiya8: 414–430.

    CAS  Google Scholar 

  • Zycha, H. 1937. The growth of two wood destroying fungi and their relation to carbonic acid. Zentralbl. Bakt. II.97: 222–224.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabak, H.H., Cooke, W.B. The effects of gaseous environments on the growth and metabolism of fungi. Bot. Rev 34, 126–252 (1968). https://doi.org/10.1007/BF02872605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872605

Keywords

Navigation