Skip to main content
Log in

Localization of proteases in cells ofEscherichia coli andBacillus megaterium

Локализация протеаз в клетке Escherichia coli и Bacillus megaterium

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Summary

  1. (1)

    The localization of proteases in the cells ofBacillus megaterium andEscherichia coli was investigated. The first named species is a typical proteolytic micro-organism, the second does not excrete any protease into the medium.

  2. (2)

    In both species, some 30% total enzyme activity was released into the medium during the formation of the protoplasts or sphaeroplasts. A part of the released protease seems to originate from the disrupted protoplasts.

  3. (3)

    The enzyme occurring inside the protoplasts was distributed practically uniformly in both the species between the fraction sedimenting at 10,000 g and the supernatant.

  4. (4)

    InEscherichia coli, the enzyme fraction found in the ghosts amounts to 45%, inBacillus megaterium to 38%.

  5. (5)

    A more detailed study of the distribution of the enzyme was carried out inEscherichia coli sphaeroplasts. The ribo-some fraction, sedimenting at 105,000 g., was found to contain about 10% of the total enzyme activity. The cytoplasm contained some 60% and the plasma membrane fraction some 30%. The enzyme fraction found in the cytoplasm was increased somewhat by washing with buffer, due to solubilization of protease in the ghosts.

  6. (6)

    Ethylenediamine tetraacetic acid or urea acting on the ribosomes brought about no increase in the proteolytic activity. The former decreased the enzyme activity, the latter denatured the enzyme completely. A pre-incubation of the cell membranes (ghosts) with ribonuclease resulted in an increase in the proteolytic activity of this fraction by some 30%.

  7. (7)

    It is postulated on the basis of the above findings that the main function of the proteolytic enzymes present in the cells consists in the degradation of the cell proteins.

Abstract

  1. (1)

    Изучалася локализация протеаз в клетках Bacillus megaterium и Escherichia coli. B. megaterium—это типичный протеолитический микроорганизм, тогда как E. coli вообще не выделяет протеазы в среду.

  2. (2)

    В обоих случаях около 30% общей энзиматической активности выделялось в среду при образовании протопластов или же сферопластов. Повидимомы, часть выделяемой протеазы происходит из разрушенных протопластов.

  3. (3)

    Фермент, встречаюшийся внутри протопластов, в обоих видах бактерий был распределен приблизительно равномерно между фракцией, осаждающейся при 10.000 x g и супернатантом. В случае E. coli доля фермента, найденного во фракции ghosts, составляет 45%, для B. megaterium −38%.

  4. (4)

    Для сферопластов E. coli было произведено подробное исследование распределения фермента. В рибосомальной фракции, осаждающейся при 105 000 x g, было найдено около 10% от общего количества фермента; в цитоплазме было обнаружено около 60% протеазы, во фракции цитоплазматической оболочки −30%. Повышение доли фермента, найденного в цитоплазме, вызывалось солубилизацией протеазы из фркации ghosts при промывании буферным раствором.

  5. (5)

    Путем воздействия этилендиаминотетрауксусной кислотой или мочевиной на рибосомы не удавалось повысить протеолитическую активность. EDTA понижала энзиматическую активность, мочевина пояностью денатурировала фермент. Предварительная инкубация клеточных оболочек (ghosts) с рибонуклеазой велак повышению протеолитической активности этой фракции приблизительно на 30%.

  6. (6)

    На основе вышеприведенных фактов высказывается предположение, что главной функцией протеолитических энзимов, присутствующих в клетках, является, по-видимомы, катализ деградации клеточных белков.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burger, M., Bacon, E. E., Bacon, J. S. D.:Liberation of invertase from disintegrated yeast cells. Nature 182: 1508, 1958.

    Article  PubMed  CAS  Google Scholar 

  • Chaloupka, J., Liebster, J., Janeček, J.:The use of labeled substrates for the study of intracellular proteinases. Peaceful uses of atomic energy. Proc. 2nd Internat. Conf., v. 25, p. 140, Geneva 1958.

    CAS  Google Scholar 

  • Chaloupka, J., Liebster, J.:A proteolytic system in growing and non-growing cells of Escherichia coli. Fol. microbiol. 4: 167, 1959.

    Article  CAS  Google Scholar 

  • Chaloupka, J.:Physiological character of protein turnover in non-growing bacterial cells. Fol. microbiol. 5: 287, 1960.

    CAS  Google Scholar 

  • Chaloupka, J.:Localization of a protease in the cell of Escherichia coli, Nature 189: 512, 1961.

    Article  PubMed  CAS  Google Scholar 

  • Elson, D.:Latent enzymic activity of a ribonucleoprotein isolated from Escherichia coli. Biochim. biophys. Acta 36: 372, 1959.

    Article  PubMed  CAS  Google Scholar 

  • Hogness, D. S., Cohn, M., Monod, J.:Studies on induced synthesis of β-galactosidase in Escherichia coli. The kinetics and mechanism of sulfur incorporation. Biochim. biophys. Acta 16: 99, 1955.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, K. S.:A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem. J. 64: 405, 1956.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., Levy, R. H.:Protein turnover in growing cultures of Escherichia coli. J. biol. Chem. 217: 947, 1955.

    PubMed  CAS  Google Scholar 

  • Lederberg, J.:Bacterial protoplasts induced by penicillin. Proc. Nat. Acad. Sci. US. 42: 574, 1956.

    Article  CAS  Google Scholar 

  • Lowry, H. O., Rosenbrough, N. J., Farr, A. L., Randall, R. J.:Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265, 1951.

    PubMed  CAS  Google Scholar 

  • Mandelstam, J.:Turnover of protein in starved bacteria and its relation to the induced synthesis of enzyme. Nature 179: 1179, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Mandelstam, J.:Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 110, 1958.

    PubMed  CAS  Google Scholar 

  • Mc Quillen, K.:Bacterial protoplasts. I. Protein and nucleic acid metabolism in protoplasts of Bacillus megaterium. Biochem. biophys. Acta 17: 382, 1955a.

    Article  Google Scholar 

  • Mc Quillen, K.:Bacterial protoplasts: growth and division of protoplasts of Bacillus megaterium. Biochim. biophys. Acta 18: 485, 1955b.

    Google Scholar 

  • Repaske, R.:Lysis of gram-negative organisms and the role of versene. Biochim. biophys. Acta 30: 225, 1958.

    Article  PubMed  CAS  Google Scholar 

  • Rotman, B., Spiegelman, S.:On the origin of the carbon in the induced synthesis of β-galactosidase in Escherichia coli. J. Bacteriol. 68: 419, 1954.

    Article  PubMed  CAS  Google Scholar 

  • Urbá, R. C.:Protein breakdown in Bacillus cereus. Biochem. J. 71: 513, 1959.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaloupka, J. Localization of proteases in cells ofEscherichia coli andBacillus megaterium . Folia Microbiol 6, 231–236 (1961). https://doi.org/10.1007/BF02872527

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872527

Keywords

Navigation