Skip to main content
Log in

Radiation in the production of useful mutations

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Adams, J. D., Nilan, R. A., andGunthardt, H. M. After effects of ionizing radiation in barley. I. Modification by storage of X-rayed seeds in oxygen and nitrogen. A preliminary report. Northwest Sci.29: 101–108. 1955.

    Google Scholar 

  2. Anderson, E. G. The application of chromosomal techniques to maize improvement. Brookhaven Symp. Biol.9: 23–35. 1956.

    Google Scholar 

  3. Baker, W. K., andVon Halle, E. S. Evidence on the mechanism of the oxygen effect by use of a ring chromosome. Jour. Cell. & Comp. Physiol., Suppl., 2.45: 299–307. 1955.

    Article  CAS  Google Scholar 

  4. Bandlow, G. Mutationsversuche an Kulturpflanzen. II. Züchterisch wertvolle Mutanten bei Sommer- und Wintergersten. Züchter21: 357–363. 1951.

    Article  Google Scholar 

  5. Bauer, R. The induction of vegetative mutations inRibes nigrum. Hereditas.

  6. Beachell, H. M. [U. S. Dept. Agric., A. R. S., unpublished results.]

  7. Bishop, C. J. Mutations in apples induced by X-radiation. Jour. Hered.45: 99–104. 1954.

    Google Scholar 

  8. Bushland, R. C., Knipling, E. F., andLindquist, A. W. Eradication of the screw-worm fly by releasing gamma-ray-sterlized males among the natural population. Proc. Int. Conf. Peaceful Uses Atomic Energy, Vol. 12: 216–220. 1956.

    Google Scholar 

  9. Caldecott, R. S. Effects of hydration on X-ray sensitivity inHordeum. Rad. Res.3: 316–330. 1955.

    Article  CAS  Google Scholar 

  10. —————, andGardner, C. O. Cytogenetic effects of X-ray and thermal neutron irradiation on seeds of barley. Genetics39: 240–259. 1954.

    PubMed  CAS  Google Scholar 

  11. —————, andSmith, L. The influence of heat treatment on the injury and cytogenetic effects of X-rays on barley. Genetics37: 136–157. 1952.

    PubMed  CAS  Google Scholar 

  12. Chaudhuri, K. L., andDas, A. High-yielding X-ray mutations ofSesamum orientale L. Science & Culture [India]19: 620–622. 1954.

    Google Scholar 

  13. [Unpublished results of experiments carried out at Brookhaven National Laboratory by H. J. Curtis, N. Delihas and C. F. Konzak; and independently by R. S. Caldecott at the University of Minnesota].

  14. D’Amato, F., andGustafsson, Å. Studies on the experimental control of the mutation process. Hereditas34: 181–192. 1948.

    CAS  Google Scholar 

  15. Delaunay, L. N. Experimentell erzeugte Mutationen bei Weizen. Verlag Ukr. Akad. landwirt. Wiss. pp. 1–56. 1934.

  16. Down, E. E., andAndersen, A. L. Agronomic use of an X-ray-induced mutant. Science124: 223–224. 1956.

    Article  PubMed  Google Scholar 

  17. Ehrenberg, L. Factors influencing radiation-induced lethality, sterility, and mutations in barley. Hereditas41: 123–146. 1955.

    Google Scholar 

  18. —————, andLundqvist, U. Chemical induced mutation and sterility in barley. Acta Chem. Scand.10: 492–494. 1956.

    Article  CAS  Google Scholar 

  19. —————, andNybom, N. Irradiation effects, seed soaking and oxygen pressure in barley. Hereditas39: 493–504. 1953.

    Google Scholar 

  20. Fabergé, A. C. The analysis of induced chromosome aberrations by maize endosperm phenotypes. Zeit. Ind. & Abst. Vererb.87: 392–420. 1956.

    Article  Google Scholar 

  21. Fahmy, O. G., andFahmy, M. J. Cytogenetic analysis of pre-action of carcinogens and tumor inhibitors inDrosophila melanogaster. V. Differential genetic response to the alkylating mutagens and X-radiation. Jour. Genet.54: 146–164. 1956.

    CAS  Google Scholar 

  22. Flor, H. H. Host-parasite interaction in flax rust—its genetics and other implications. Phytopath.45: 680–685. 1955.

    Google Scholar 

  23. Freisleben, R., andLein, A. Über die Auffindung einer mehltauresistenten Mutante nach Röntgenbestrahlung einer anfälligen reinen Linie von Sommergerste. Naturwiss.30: 608. 1942.

    Article  Google Scholar 

  24. —————, and ————— Röntgenindurzierte Mutationen bei Gerste. Züchter16: 49–64. 1944.

    Google Scholar 

  25. Frey, K. J. Artificially induced mutations in oats. Agron. Jour.46: 49. 1954.

    Google Scholar 

  26. —————. Agronomic mutations in oats induced by X-ray treatment. Agron. Jour.47: 207–210. 1955.

    Google Scholar 

  27. —————, andBrowning, J. A. Mutations for stem rust resistance induced in oats by X-ray treatment. Phytopath.45: 490–492. 1955.

    Google Scholar 

  28. Giles, N. H. The oxygen effect on radiation-induced chromosome aberrations: breakage-versus-recombination hypotheses. Jour. Cell. & Comp. Physiol., Suppl. 245: 271–284. 1955.

    Article  CAS  Google Scholar 

  29. ————— Forward and back mutation at specific loci inNeurospora. Brookhaven Symp. Biol.8: 103–123. 1955.

    Google Scholar 

  30. Granhall, I. Spontaneous and induced bud mutations in fruit trees. Acta Agric. Scand.4: 594–600. 1954.

    Google Scholar 

  31. Gregory, W. C. X-ray breeding of peanuts (Arachis hypogaea L.). Agron. Jour.47: 396–399. 1955.

    CAS  Google Scholar 

  32. ————— The comparative effects of radiation and hybridization in plant breeding. Proc. Int. Conf. Peaceful Uses Atomic Energy12: 48–51. 1956.

    Google Scholar 

  33. ————— Induction of useful mutations in the peanut. Bookhaven Symp. Biol.9: 177–190. 1956.

    Google Scholar 

  34. Gustafsson, Å. Studies on the genetic basis of chlorophyll formation and the mechanism of induced mutation. Hereditas24: 33–93. 1938.

    Google Scholar 

  35. ————— The X-ray resistance of dormant seeds in some agricultural plants. Hereditas30: 165–178. 1944.

    Google Scholar 

  36. ————— Mutations in agricultural plants. Hereditas33: 1–100. 1947.

    Google Scholar 

  37. ————— Swedish mutation work in plants: background and present organization. Acta Agric. Scand.4: 361–364. 1954.

    Google Scholar 

  38. ————— Mutations, viability, and population structure. Acta Agric. Scand.4: 601–632. 1954.

    Google Scholar 

  39. Hansel, von H., andZakovsky, J. Röntgeninduzierte Mutanten der Vollkorngerste (Hordeum distichum nutans). I. Bestrahlung und Auslese auf Mehltauresistenz. Die Bodenkultur [Austria]9: 50–64. 1956.

    Google Scholar 

  40. Harlan, J. R. Distribution and utilization of natural variability in cultivated plants. Brookhaven Symp. Biol.9: 191–206. 1956.

    Google Scholar 

  41. Hoffmann, W. Ergebnisse der Mutationszüchtung.In: Vorträge über Pflanzenzüchtung. 1951. [pp. 36–53].

  42. —————, andZoschke, U. Röntgenmutationen beim Flachs (Linum usitatissimum L.) Züchter25: 199–206. 1955.

    Article  Google Scholar 

  43. Hollaender, A. The mechanism of radiation effects and the use of radiation for the production of mutations with improved fermentation. Ann. Missouri Bot. Garden32: 165–178. 1945.

    Article  Google Scholar 

  44. Horlacher, W. R., andKillough, D. T. Progressive mutations induced inGossypium hirsutum by radiations. Amer. Nat.67: 532–538. 1933.

    Article  Google Scholar 

  45. Jacob, K. T. Synopsis of the applied research work of the Botany Department for 1954–1955. Bose Institute [India]. 1955. [pp. 44–91.]

  46. Jajima, Y., Harada, C., andOta, N. On the sex discriminating method by coloring genes of silk-worm eggs. I. Induction of translocation between the W and the tenth chromosome. Jap. Jour. Breed.1: 47–50. 1951.

    Google Scholar 

  47. Kaplan, R. W. Einfluss tiefer Temperatur auf die Röntgenstrahlen-Mutationsraten von Gerstenkörnen. Naturwiss.34: 316–317. 1948.

    Article  CAS  PubMed  Google Scholar 

  48. ————— Uber Möglichkeiten der Mutationsauslösung in der Pflanzenzüchtung. Zeits. Pflanzenzucht.32: 121–131. 1953.

    Google Scholar 

  49. Kobayashi, T. [Action of radioactive substances on the plant cells. II. Mutants in sesame induced by double irradiations of beta and X-rays.] Jap. Jour. Genet.30: 174. 1955. [In Japanese.]

    Google Scholar 

  50. Kölmark, G. Differential response to mutagens as studied by theNeurospora reverse mutation test. Hereditas39: 270–276. 1953.

    Google Scholar 

  51. Konzak, C. F. Stem rust resistance in oats induced by nuclear radiation. Agron. Jour.46: 538–540. 1954.

    Google Scholar 

  52. ————— Induction of mutations for disease resistance in cereals. Brookhaven Symp. Biol.9: 157–171. 1956.

    Google Scholar 

  53. ————— The influence of oxygen on the mutagenic effects of X-rays on maize endosperm loci. Rad. Res.6: 1–10. 1957.

    Article  CAS  Google Scholar 

  54. ————— Genetic effects of radiation on higher plants. Quart. Rev. Biol.32: 27–45. 1957.

    Article  PubMed  CAS  Google Scholar 

  55. —————, andGibler, J. Stripe rust resistant mutants obtained from irradiation of Gabo wheat. Phytopath.46: 525–526. 1956.

    Google Scholar 

  56. Lamprecht, H. Röntgen-empfindlichkeit und genotypische Konstitution beiPisum. Agr. Hort. Genet.14: 161–176. 1956.

    Google Scholar 

  57. Lawrence, T. The production of mutations by the irradiation of Montcalm barley. Canad. Jour. Bot.33: 515–530. 1955.

    Article  Google Scholar 

  58. Lewis, D. Structure of the incompatibility gene. II. Induced mutation rate. Heredity3: 339–355. 1949.

    Article  PubMed  CAS  Google Scholar 

  59. Lutkov, A. N. Chlorophyll mutations and other types of hereditary variations induced inHordeum by X-rays. Bull. Appl. Bot. II.7: 223–225. 1937.

    Google Scholar 

  60. Mac Key, J. Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas40: 65–180. 1954.

    Google Scholar 

  61. ————— Mutation breeding in Europe. Brookhaven Symp. Biol.9: 141–152. 1956.

    Google Scholar 

  62. Mertens, T. R. andBurdick, A. B. On the X-ray production of ‘desirable’ mutations in quantitative traits. Amer. Jour. Bot.44: 391–394. 1957.

    Article  Google Scholar 

  63. Muller, H. J. On the relation between chromosome changes and gene mutations. Brookhaven Symp. Biol.8: 126–147. 1955.

    Google Scholar 

  64. Myers, W. M., Ausemus, E. R., Koo, F. K. S., andHsu, K. J. Resistance to rust induced by ionizing radiations in wheat and oats. Proc. Int. Conf. Peaceful Uses Atomic Energy12: 60–62. 1956.

    Google Scholar 

  65. Nilan, R. A. Relation of carbon dioxide, oxygen and low temperature to the injury and cytogenetic effects of X-rays in barley. Genetics39: 943–953. 1954.

    PubMed  CAS  Google Scholar 

  66. ————— Post-radiation storage effect on chromosomes in barley seeds X-rayed at normally ineffective dosages. Genetics40: 588. 1955.

    Google Scholar 

  67. ————— Factors governing plant radiosensitivity. Conf. Radioactive Isotopes in Agric., U.S.A.E.C., TID7512: 151–162. 1956.

    Google Scholar 

  68. Nybom, N. On the differential action of mutagenic agents. Hereditas42: 211–217. 1956.

    Google Scholar 

  69. —————, andEhrenberg, L. Biological effects of X-irradiation at low temperatures. Hereditas39: 445–457. 1953.

    Article  Google Scholar 

  70. Oltmann, W. Züchterische Auswertung röntgeninduzierter Mutationen an physiologischen Merkmalen bei Winterweizen. Zeits. Pflanzenz.29: 76–89. 1950.

    Google Scholar 

  71. Raper, K. B. Penicillin. U. S. Dept. Agr., Yearbook1943–1947: 699–710. 1947.

    Google Scholar 

  72. Richter, A., andSingleton, W. R. The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc. Nat. Acad. Sci.41: 295–300. 1955.

    Article  PubMed  CAS  Google Scholar 

  73. Sagawa, Y., andMehlquist, G. A. L. The mechanism responsible for some X-ray induced changes in flower color of the carnation,Dianthus caryophyllus. Amer. Jour. Bot.44: 397–403. 1957.

    Article  Google Scholar 

  74. Sapehin, A. A. X-ray mutants in soft wheat. Bull Appl. Bot., Genet. & Plant Breed. II.9: 3–37. 1936.

    Google Scholar 

  75. Sears, E. R. The transfer of leaf-rust resistance fromAegilops umbellulata to wheat. Brookhaven Symp. Biol.9: 1–21. 1956.

    Google Scholar 

  76. Shebeski, L. H., andLawrence, T. The production of beneficial mutations in barley by irradiation. Canad. Jour. Agri. Sci.34: 1–9. 1954.

    Google Scholar 

  77. Singleton, W. R. The effect of chronic gamma radiation on endosperm mutations in maize. Genetics39: 587–603. 1954.

    PubMed  CAS  Google Scholar 

  78. —————, andSparrow, A. H. The contribution of radiation genetics to crop improvement. Proc. Int. Conf. Peaceful Uses Atomic Energy12: 25–30. 1956.

    Google Scholar 

  79. Smith, H. H., andSrb, A. M. Induction of mutations with betapropiolactone. Science114: 490–492. 1951.

    Article  PubMed  CAS  Google Scholar 

  80. Smith, L. Hereditary susceptibility to X-ray injury inTriticum monococcum. Amer. Jour. Bot.29: 189–191. 1942.

    Article  Google Scholar 

  81. Sparrow, A. H. Radiation sensitivity of cells during mitotic and meiotic cycles with emphasis on possible cytochemical changes. Ann. N. Y. Acad. Sci.51: 1508–1540. 1951.

    Article  PubMed  CAS  Google Scholar 

  82. —————, andGunckel, J. E. The effects on plants of chronic exposure to gamma radiation from radiocobalt. Proc. Int. Conf. Peaceful Uses Atomic Energy12: 52–59. 1956.

    Google Scholar 

  83. —————, andSingleton, W. R. The use of radiocobalt as a source of gamma rays and some effects of chronic irradiation on growing plants. Amer. Nat.87: 29–48. 1953.

    Article  Google Scholar 

  84. Stadler, L. J. Chromosome number and the mutation rate inAvena andTriticum. Proc. Nat. Acad. Sci.15: 876–881. 1929.

    Article  PubMed  CAS  Google Scholar 

  85. ————— The experimental modification of heredity in crop plants. II. Induced mutation. Sci. Agr.11: 645–661. 1931.

    Google Scholar 

  86. Stubbe, H. Über einige theoretische und praktische Fragen der Mutations-forschung. Abh. Sächs. Akad. Wiss., Math.-naturwiss. Klasse47: 3–23 + xi. 1952.

    Google Scholar 

  87. Swanson, C. P. The oxygen effect and chromosome breakage. Jour. Cell. & Comp. Physiol., Suppl. 2.45: 285–298. 1955.

    Article  CAS  Google Scholar 

  88. Tascher, W. R. Experiments with X-ray treatments on the seeds of certain crop plants. Univ. Missouri (Thesis-Ph.D.). 37 pp. 1929.

  89. Thompson, K. F., Mac Key, J., Gustafsson, Å., andEhrenberg, L. The mutagenic effect of radiophosphorus in barley. Hereditas36: 220–224. 1950.

    CAS  Google Scholar 

  90. Wallace, A. T. [Unpublished results.]

  91. Wheeler, H. E., andLuke, H. H. Mass screening for disease-resistant mutants in oats. Science122: 1229. 1955.

    Article  Google Scholar 

  92. Wolff, S., andLuippold, H. E. Metabolism and chromosomebreak rejoining. Science122: 231–232. 1955.

    Article  PubMed  CAS  Google Scholar 

  93. Zacharias, M. Mutationversuche an Kulturpflanzen. VI. Röntgenbestrahlungen der Sojabohne (Glycine soja (L.) Sieb. et Zucc.). Züchter11: 321–338. 1956.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The substance of this article was included in papers presented at the A.I.B.S. Symposium on “The Application of Atomic Energy to Problems in Agriculture”, August, 1956; the Rutgers Nuclear Science Symposium, October, 1956; and the Oak Ridge Regional Symposium on “Radiation in Plant Breeding”, January, 1957. Research conducted under the auspices of the U. S. AEC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H.H. Radiation in the production of useful mutations. Bot. Rev 24, 1–24 (1958). https://doi.org/10.1007/BF02872515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872515

Keywords

Navigation