The Botanical Review

, Volume 2, Issue 4, pp 197–215

Genetics of polyploidy

  • E. W. Lindstrom
Article
  • 61 Downloads

Conclusion

In general, then, genetic evidence from polyploids harmonizes surprisingly well with concepts based on the modern gene-chromosome law of heredity. This is true for both the individual hereditary characters and the organism as a whole. With the former, it is evident that character inheritance follows the particular gene distribution even when the cytological mechanism is disturbed by the addition of chromosomes.

The organism as a whole is also influenced by polyploidy but the relations of the parts are, nevertheless, maintained. The addition of one chromosome in a trisomic, for example, alters many individual characters and upsets the favorable balance of plus and minus factors established in the diploid by long continued selection. Nevertheless, the plant continues to function as a whole. This can mean only that there is a high degree of elasticity in an organism, affording a margin of safety for variable conditions. This may well explain the success of the mutation theory of evolution in giving new mutations time to become established and to become fitted into the germinal complex in which they arose. True polyploidy affords, in addition, extra gene loci as sources for new mutations. Such extra loci, as they mutate, must preserve a correlated function with their original sister loci and the polyploid condition would seem to afford time and protection for this process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Allen, C. E. Polyploidy inSphaerocarpus. Proc. 6th Int. Congr. Genetics2: 1–2. 1932.Google Scholar
  2. 2.
    Bartlett, M. S. andHaldane, J. B. S. The theory of inbreeding in autotetraploids. Jour. Genetics29: 175–180. 1934.Google Scholar
  3. 3.
    Beatus, Richard. Genetik und Chiasmatypie bei Polyploiden. Der Biologe4: 1–11. 1935.Google Scholar
  4. 4.
    Belling, John andBlakeslee, A. F. The distribution of chromo-somes in tetraploidDatura. Am. Nat.58: 60–70. 1924.CrossRefGoogle Scholar
  5. 5.
    ——. The reduction division in haploid, diploid, triploid and tetraploidDaturas. Proc. Nat. Acad. Sci.9: 106–111. 1923.PubMedCrossRefGoogle Scholar
  6. 6.
    Blakeslee, A. F. Types of mutations and their possible significance in evolution Am. Nat.55: 254–267. 1921.CrossRefGoogle Scholar
  7. 7.
    — andSinnott, E. W. Structural changes associated with factor mutations and with chromosome mutations inDatura. Proc. Nat. Acad. Sci.8: 17–19. 1922.PubMedCrossRefGoogle Scholar
  8. 8.
    — andFarnham, M. E. Trisomie inheritance in the Poin-settia mutant ofDatura. Am. Nat.57: 481–495. 1923.CrossRefGoogle Scholar
  9. 9.
    —,Belling, J. andFarnham, M. E. Inheritance of tetra-ploidDatura. Bot. Gaz.76: 329–373. 1923.CrossRefGoogle Scholar
  10. 10.
    Brink, R. A. Cytogenetic evolutionary processes in plants. Am. Nat.69: 97–124. 1935.CrossRefGoogle Scholar
  11. 11.
    Clausen, R. E. andGoodspeed, T. H. Interspecific hybridization inNicotiana. II. A tetraploidglutinosa-tabacum hybrid, an experi-mental verification of Winge’s hypothesis. Genetics10: 278–284. 1925.PubMedGoogle Scholar
  12. 12.
    ——. Inheritance inNicotiana tabacum. The tri-somie character, “enlarged.” Genetics9: 181–197. 1924.PubMedGoogle Scholar
  13. 13.
    Collins, G. N. andLongley, A. E. A tetraploid hybrid of maize and perennial teosinte. Jour. Agr. Res.50: 123–133. 1935.Google Scholar
  14. 14.
    Crane, M. B. andDarlington, C. D. Chromatid segregation in tetraploidRubus. Nature129: 869. 1932.CrossRefGoogle Scholar
  15. 15.
    Darlington, C. R. Recent advances in cytology. 1932.Google Scholar
  16. 16.
    —. Meiosis in diploid and tetraploidPrimula sinensis. Jour. Genetics24: 65–96. 1931.Google Scholar
  17. 17.
    Emerson, R. A. Genetic notes on hybrids of perennial Teosinte and maize. Am. Nat.63: 289–300. 1929.CrossRefGoogle Scholar
  18. 18.
    — andBeadle, G. W. A fertile tetraploid hybrid betweenEuchlaena perennis andZea mays. Am. Nat.64: 190–192. 1930.CrossRefGoogle Scholar
  19. 19.
    Fernandes, A. Nouvelles études caryologiques sur le genreNarcissus L. Bol. Soc. Broteriana11: 1–198. 1934.Google Scholar
  20. 20.
    Gregory, R. P. On the genetics of tetraploid plants inPrimula sinensis. Proc. Roy. Soc. B.87: 484–492. 1914.Google Scholar
  21. 21.
    Haldane, J. B. S. Theoretical genetics of autopolyploids. Jour. Genetics22: 359–372. 1930.Google Scholar
  22. 22.
    Humphrey, L. M. The meiotic divisions of haploid, diploid and tetra-ploid tomatoes with special reference to the prophase. Cytologia5: 278–300. 1934.Google Scholar
  23. 23.
    Huskins, C. L. The origin ofSpartina Townsendii. Genetica12: 531–538. 1930.CrossRefGoogle Scholar
  24. 24.
    Jorgensen, C. A. The experimental formation of heteroploid plants in the genusSolatium. Jour. Genetics19: 133–211. 1928.Google Scholar
  25. 25.
    Karpechenko, G. D. The production of polyploid gametes in hybrids. Hereditas9: 349–308. 1927.Google Scholar
  26. 26.
    —. Polyploid hybrids ofRaphanus sativus L ×Brassica oleracea L. Zeits. Induk. Abst. Vererb.48: 1–85. 1928.CrossRefGoogle Scholar
  27. 27.
    Lawrence, W. J. C. The genetics and cytology ofDahlia variabilis. Jour. Genetics24: 257–306. 1931.Google Scholar
  28. 28.
    Lesley, J. W. A cytological and genetical study of progenies of triploid tomatoes. Genetics13: 1–43. 1928.PubMedGoogle Scholar
  29. 29.
    — andMann, M. C. Triploidy in the tomato. Science61: 208. 1925.PubMedCrossRefGoogle Scholar
  30. 30.
    —. The genetics ofLycopersicum esculentum Mill. I. The trisomic inheritance of “dwarf.” Genetics11: 352–354. 1926.PubMedGoogle Scholar
  31. 31.
    Lindstrom, E. W. andKoos, Katharine. Cyto-genetic investigations of a haploid tomato and its diploid and tetraploid progeny. Am. Jour. Bot.18: 398–410. 1931.CrossRefGoogle Scholar
  32. 32.
    — andHumphrey, L. M. Comparative cyto-genetic studies of tetraploid tomatoes from different origins. Genetics18: 193–200. 1933.PubMedGoogle Scholar
  33. 33.
    Longley, A. E. Chromosomes in grass sorghums. Jour. Agr. Res.44: 317–321. 1932.Google Scholar
  34. 34.
    McClintock, Barbara. A cytological and genetical study of triploid maize. Genetics14: 180–182. 1929.PubMedGoogle Scholar
  35. 35.
    Muller, H. J. A new mode of segregation in Gregory’s tetraploidPrimulas. Am. Nat.48: 508–512. 1914.CrossRefGoogle Scholar
  36. 36.
    Müntzing, Arne. Cytogenetic investigations on syntheticGaleopsis tetrahit. Hereditas16: 105–154. 1932.Google Scholar
  37. 37.
    Newton, W. C. F. and Pellew, Caroline.Primula Kewensis and its derivatives. Jour. Genetics20: 405–467. 1929.Google Scholar
  38. 38.
    — andDarlington, C. D. Meiosis in polyploids. I. Jour. Genetics21: 1–15. 1929.Google Scholar
  39. 39.
    Pellew, Caroline andDurham, F. The genetic behavior of the hybridPrimula Kewensis and its allies. Jour. Genetics5: 157. 1916.Google Scholar
  40. 40.
    Randolph, L. F. Cytogenetics of tetraploid maize. Jour. Agr. Res.50: 591–605. 1935.Google Scholar
  41. 41.
    Rhoades, Marcus M. An experimental and theoretical study of chro-matid crossing øver. Genetics18: 535–555. 1933.PubMedGoogle Scholar
  42. 42.
    — andMcClintock, Barbara. The cytogenetics of maize. Bot. Rev.1: 292–325. 1935.CrossRefGoogle Scholar
  43. 43.
    Rohweder, H. Beiträge zur Systematik and Phylogenie des GenusDianthus. Bot. Jahrb. Systematik66: 249–366. 1934.Google Scholar
  44. 44.
    Sansome, F. W. Chromatid segregation inSolanum lycopersicum. Jour. Genetics27: 105–132. 1933.CrossRefGoogle Scholar
  45. 45.
    -and Philp, J. Recent advances in plant genetics. 1932.Google Scholar
  46. 46.
    Sharp, L. W. Introduction to cytology. 1934.Google Scholar
  47. 47.
    Sinnort, E. W., Houghtaling, Helen and Blakeslee, A. F. The comparative anatomy of extra-chromosomal types inDatura stramonium. Carnegie Inst. Wash. Pub. 451. 1934.Google Scholar
  48. 48.
    Skovsted, A. Cytological investigations of the genusAesculus L. Hereditas12: 64–70. 1929.CrossRefGoogle Scholar
  49. 49.
    Sömme, A. Sverdrup. Genetics and cytology of the tetraploid form ofPrimula sinensis. Jour. Genetics23: 447–509. 1930.Google Scholar
  50. 50.
    Wanscher, J. H. The basic chromosome number of the higher plants. New Phyt.33: 101–126. 1934.CrossRefGoogle Scholar
  51. 51.
    Wettstein, F. v. Morphologie und Physiologie des Fonnwechsels der Moose auf genetischer Grundlage. I. Zeits. Induk. Abst. Vererb.33: 1–236. 1924.CrossRefGoogle Scholar
  52. 52.
    —. Morphologie und Physiologie des Formwechsels der Moose auf genetischer Grundlage. II. Bibliotheca Genetica10: 1–216. 1928.Google Scholar
  53. 53.
    Winkler, H. Über die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Zeits. Bot.8: 417–544. 1916.Google Scholar
  54. 54.
    de Winton, D. andHaldane, J. B. S. Linkage in the tetraploidPrimula sinensis. Jour. Genetics24: 121–144. 1931.Google Scholar

Copyright information

© The New York Botanical Garden 1936

Authors and Affiliations

  • E. W. Lindstrom
    • 1
  1. 1.Iowa State CollegeUSA

Personalised recommendations