Skip to main content
Log in

Interrelations of dissolved organic matter and phytoplankton

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Akehurst, S. C. 1931. Observations on pond life, with special reference to the possible causation of swarming of phytoplankton. Jour. Roy. Micr. Soc.51: 237–265.

    CAS  Google Scholar 

  2. Albert, A. 1950. Quantitative studies of the avidity of naturally occurring substances for trace metals. I. Amino acids having only two ionizing groups. Biochem. Jour.47: 531–538.

    CAS  Google Scholar 

  3. -. 1951. Selective toxicity.

  4. Aleyev, B. S. 1934. Secretion of organic substances by algae into the surrounding medium. Mikrobiologia [Moscow]3: 506–508.

    Google Scholar 

  5. Algeus, S. 1948. Glycocoll as a source of nitrogen forScenedesmus obliquus. Physiol. Plant.1: 65–84.

    Article  CAS  Google Scholar 

  6. — 1948. The utilization of glycocoll byChlorella vulgaris. Physiol. Plant.1: 236–244.

    Article  CAS  Google Scholar 

  7. — 1948. The deamination of glycocoll by green algae. Physiol. Plant.1: 382–386.

    Article  CAS  Google Scholar 

  8. — 1949. Alanine as a source of nitrogen for green algae. Physiol. Plant.2: 266–271.

    Article  Google Scholar 

  9. — 1950. The utilization of aspartic acid, succinamide and asparagine byScenedesmus obliquus. Physiol. Plant.3: 225–234.

    Article  Google Scholar 

  10. — 1950. Further studies on the utilization of aspartic acid, succinamide and asparagine by green algae. Physiol. Plant.3: 370–375.

    Article  Google Scholar 

  11. — 1951. Effect of pyridoxin on growth ofScenedesmus obliquus. Physiol. Plant.4: 449–458.

    Article  CAS  Google Scholar 

  12. — 1951. Note on the utilization of glutamine byScenedesmus obliquus. Physiol. Plant.4: 459–460.

    Article  CAS  Google Scholar 

  13. Ashworth, C. T., andM. R. Mason. 1946. Observations on the pathological changes produced by a toxic substance in the blue green algaMicrocystis aeruginosa. Amer. Jour. Path.22: 369.

    CAS  Google Scholar 

  14. Bainbridge, R. 1953. Studies on the interrelationship of zooplankton and phytoplankton. Jour. Mar. Biol. Assoc. U.K.32: 385–445.

    Google Scholar 

  15. Beckwith, T. R. 1933. Metabolic studies upon certainChlorellas and allied forms. Univ. Cal. Los Ang., Publ. Biol. Sci.1: 1–34.

    CAS  Google Scholar 

  16. Benedict, R. G., andA. R. Langlykke. 1947. Antibiotics. Ann. Rev. Microbiol.1: 193–236.

    Article  CAS  Google Scholar 

  17. Beyerinck, M. W. 1890. Culturversuche mit zoochlorellen Lachengonidien und neideren Algen. Bot. Zeits.48: 724–768; 781–785.

    Google Scholar 

  18. Birge, E., andC. Juday. 1926. Organic content of lake water. U. S. Bur. Fish, Bull.42: 185–205.

    Google Scholar 

  19. — 1934. Particulate and dissolved organic matter in inland lakes. Ecol. Monogr.4: 440–474.

    Article  CAS  Google Scholar 

  20. Bishop, C. T., G. A. Adams, and E. O. Hughes. 1954. A polysaccharide from the blue green alga,Anabaena cylindrica. Canad. Jour. Chem.32: 999–1004.

    Article  CAS  Google Scholar 

  21. Blinks, L. R. 1951. Physiology and biochemistry of algae.In: Verdoorn, F. [ed.] Manual of Phycology.

  22. Bristol-Roach, B. M. 1926. On the relation of certain soil algae to some soluble organic compounds. Ann. Bot.40: 149–201.

    Google Scholar 

  23. — 1928. On the influence of light and of glucose on the growth of a soil alga. Ann. Bot.42: 317–345.

    Google Scholar 

  24. Brunel, J., G. W. Prescott, andL. H. Tiffany. 1950. The culturing of algae. A symposium. C. F. Kettering Foundation.

  25. Connell, C. H., andJ. B. Gross. 1950. Mass mortality of fish associated with the protozoanGonyaulax in the Gulf of Mexico. Science112: 359–363.

    Article  PubMed  CAS  Google Scholar 

  26. Dangeard, A. P. 1921. Observations sur une algue cultivée à l’obscurité depuis huit ans. Compt. Rend. Acad. Sci. [Paris]172: 254–260.

    Google Scholar 

  27. Davis, C. C. 1948.Gymnodinium brevis. A cause of discolored water and animal mortality in the Gulf of Mexico. Bot. Gaz.109: 358–360.

    Article  Google Scholar 

  28. Domogalla, B. P., C. Juday, and W. H. Peterson. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem.63: 269–285.

    CAS  Google Scholar 

  29. Droop, M. R. 1954. Cobalamin requirement in Chrysophyceae. Nature174: 520.

    Article  CAS  Google Scholar 

  30. — 1955. A pelagic marine diatom requiring cobalamin. Jour. Mar. Biol. Assoc. U.K.34: 229–231.

    CAS  Google Scholar 

  31. Dusi, H. 1933. Recherches sur la nutrition de quelquesEuglenes. Ann. Inst. Pasteur50: 550–597; 840–890.

    CAS  Google Scholar 

  32. Eny, D. M. 1951. Respiration studies onChlorella. II. Influence of various organic acids on gas exchange. Plant Physiol.26: 268–289.

    PubMed  CAS  Google Scholar 

  33. Fleming, R. H. 1939. The control of diatom populations by grazing. Jour. Cons.14: 210–227.

    Google Scholar 

  34. Flint, L. H., andC. F. Moreland. 1946. Antibiosis in the blue green algae. Amer. Jour. Bot.33: 218.

    Article  Google Scholar 

  35. Fogg, G. E. 1951. The production of extracellular nitrogenous substances by a blue green alga. Proc. Roy. Soc. Lond. B.139: 372.

    Google Scholar 

  36. -. 1953. The metabolism of algae.

  37. — andD. F. Westlake. 1955. The importance of extracellular products of algae in freshwaters. Int. Assoc. Theor. App. Limn.12: 219–232.

    Google Scholar 

  38. - andM. Wolfe. 1954. The nitrogen metabolism of the blue green algae (Myxophyceae).In: Autotrophic microorganisms.

  39. Fox, D. L., C. H. Oppenheimer, andT. S. Kittredge. 1953. Microfiltration in oceanographic research. II. Jour. Mar. Res.12: 233–243.

    CAS  Google Scholar 

  40. Genevois, L. 1927. Über Atmung und Gärung in grunen Pflanzen. Biochem. Zeits.186: 461–473.

    Google Scholar 

  41. — 1928. Sur la fermentation et sur la respiration chez les vegetaux Chlorophylliens. Rev. Gén. Bot40: 735–746.

    Google Scholar 

  42. — 1929. Sur la fermentation et sur la respiration chez les vegetaux Chlorophylliens. Rev. Gén. Bot.41: 49–63; 154–184.

    Google Scholar 

  43. Goryunova, S. V. 1952. Characterization of dissolved organic substances in water of Glubokoje Lake. Trudy. Inst. Mikrobiol. Akad. Nauk.2: 166–179. [Chem. Abs.47: 8293h.]

    Google Scholar 

  44. Griffiths, M. 1923. The phytoplankton of bodies of freshwater and the factors determining its occurrence and composition. Jour. Ecol.11: 184–213.

    Article  Google Scholar 

  45. Gunter, G. R., R. H. Williams, C. C. Davis, andF. G. W. Smith. 1948. Catastrophic mass mortality of marine animals and coincident phytoplankton bloom on the west coast of Florida. Ecol. Monogr.18: 309–327.

    Article  Google Scholar 

  46. Hall, R. P. 1939. The trophic nature of the plant-like flagellates. Quart. Rev. Biol.14: 1–12.

    Article  Google Scholar 

  47. Harder, R. 1927. Ernährungsphysiologische Untersuchungen an Cyanophyceen, hauptsächlich dem endophytischemNostoc punctiforme. Zeits. Bot9: 145–242.

    Google Scholar 

  48. Hardy, A. C. 1936. Plankton ecology and the hypothesis of animal exclusion. Proc. Linn. Soc. Lond.148: 64–70.

    Google Scholar 

  49. — andE. R. Gunther. 1935. The plankton of the South Georgia whaling grounds and adjacent waters, 1926–1927. Discovery Reports11: 1–456.

    Google Scholar 

  50. Harvey, H. W. 1934. Annual variation of planktonic vegetation. Jour. Mar. Biol. Ass. U.K.19: 775–792.

    Article  Google Scholar 

  51. — 1939. Substances controlling the growth of a diatom. Jour. Mar. Biol. Ass. U.K.23: 499–520.

    CAS  Google Scholar 

  52. -. 1945. Recent advances in the chemistry and biology of sea water.

  53. Hutchinson, G. E. 1941. Ecological aspects of succession in natural populations. Amer. Nat.75: 406–418.

    Article  Google Scholar 

  54. — 1943. Thiamin in lake waters and aquatic organisms. Arch. Bioch.2: 143–150.

    CAS  Google Scholar 

  55. — 1944. Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters. Ecology25: 3–26.

    Article  CAS  Google Scholar 

  56. — andJ. K. Setlow. 1946. Limnological studies in Connecticut. VIII. The niacin cycle in a small inland lake. Ecology27: 13–22.

    Article  CAS  Google Scholar 

  57. — andJ. Vallentyne. 1955. New approaches to the study of lake sediments. Int. Assoc. Theor. & App. limn.12: 669–670.

    Google Scholar 

  58. Hutner, S., andL. Provasoli. 1951.In: The Phytoflagellates. Biochemistry and physiology of protozoa.

  59. — 1953. A pigmented marine diatom requiring vitamin B12 and uracil. News Bull. Phycol. Soc. Amer.6: 7–8.

    Google Scholar 

  60. — andJ. Filfus. 1953. Nutrition of some phagotrophic freshwater chrysomonads. Ann. N. Y. Acad. Sci.56: 852–862.

    Article  PubMed  CAS  Google Scholar 

  61. Hutner, S., L. Provasoli, A. Schatz, andC. P. Haskins. 1954. Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Amer. Phil. Soc.94: 152–170.

    Google Scholar 

  62. Ingram, W. M., andG. W. Prescott. 1954. Toxic freshwater algae. Amer. Mid. Nat.52: 75–87.

    Article  CAS  Google Scholar 

  63. Johnston, R. 1955. Biologically active compounds in the sea. Jour. Mar. Biol. Assoc. U.K.34: 185–195.

    Article  CAS  Google Scholar 

  64. Johnstone, J., A. Scott, andH. Chadwick. 1924. Marine plankton.

  65. Krogh, A., E. Lange, andW. Smith. 1930. On the organic matter given off by algae. Biochem. Jour.24: 1666–1671.

    CAS  Google Scholar 

  66. Lefevre, M., H. Jakob, andM. Nisbet. 1948. Action des substances excretées en culture par certaines espèces d’algues sur le metabolisme d’autres espèces d’algue. Proc. Int. Assoc. Limn.10: 259–264.

    Google Scholar 

  67. — 1950. Compatibilités et antagonismes entre algues d’eau douce dans les collections d’eau naturelles. Proc. Int. Assoc. Limn.11: 224–229.

    Google Scholar 

  68. — 1952. Auto et heteroantagonisme chez les algues d’eau douce. Ann. Sta. Centrale Hydrobiol. Appl.4: 5–197.

    Google Scholar 

  69. Lewin, J. C. 1953. Heterotrophy in diatoms. Jour. Gen. Microbiol.9: 305–313.

    CAS  Google Scholar 

  70. — 1953. Silicon metabolism in diatoms. Jour. Gen. Physiol.36: 589–599.

    Google Scholar 

  71. Lewin, R. A. 1952. Vitamin requirements in the Chlorococcales. News Bull. Phycol. Soc. Amer.5: 21–22.

    Google Scholar 

  72. — 1954. A marineStichococcus sp. which requires vitamin B12 (cobalamin). Jour. Gen. Microbiol.10: 93–96.

    CAS  Google Scholar 

  73. Lucas, C. E. 1936. On certain interrelations between phytoplankton and Zooplankton under experimental conditions. Jour. Cons.11: 343.

    Google Scholar 

  74. — 1938. Some aspects of integration of plankton communities. Jour. Cons.13: 309.

    Google Scholar 

  75. — 1947. The ecological effects of external metabolites. Biol. Rev. Cambr. Phil. Soc.22: 270–295.

    Article  CAS  Google Scholar 

  76. -. 1949. External metabolites and ecological adaptation. Symp. Soc. Exp. Biol. III. Selective toxicity and antibiotics. pp. 336–356.

  77. — 1955. External metabolites in the sea. Pap. Mar. Biol. & Oceanogr., Deep-Sea Research, suppl. to Vol. 3: 139–148.

    Google Scholar 

  78. Luksch, J. 1932. Ernährungsphysiologische Untersuchungen an Chlamydomonadeen. Bot. Centralbl. Beiheft. A.50: 64–94.

    Google Scholar 

  79. Lwoff, A., andDusi, H. 1931. La nutrition azotée et carboneed’Euglena gracilis en culture pure a l’obscurité. Compt. Rend. Soc. Biol. [Paris]107: 1068–1069.

    Google Scholar 

  80. — 1935. La nutrition azotée et carbonée deChlorogonium euchlorium à l’obscurité; l’acid acétique envisage comme produit de l’assimilation chlorophyllienne. Compt. Rend. Soc. Biol. [Paris]119: 1260.

    CAS  Google Scholar 

  81. Lwoff, M., andA. Lwoff. 1929. Le pouvoir de synthèse deChlamydomonas agloeformis et d’Haematocococcus pluvialis en culture pure à l’obscurité. Compt. Rend. Soc. Biol. [Paris]102: 569–571.

    Google Scholar 

  82. Martell, A. E., andM. Calvin. 19S2. Chemistry of the metal chelate compounds.

  83. McCombie, A. M. 1953. Factors influencing the growth of phytoplankton. Jour. Fish. Res. Bd. Canada10: 253–282.

    Google Scholar 

  84. Myers, J. 1940. A study of the pigments produced in darkness by certain green algae. Plant Physiol.15: 575–588.

    PubMed  CAS  Google Scholar 

  85. — 1951. Physiology of the algae. Ann. Rev. Microbiol.5: 157–180.

    Article  CAS  Google Scholar 

  86. —,M. Cramer, andJ. Johnston. 1947. Oxidative assimilation in relation to photosynthesis inChlorella. Jour. Gen. Physiol.30: 217–227.

    Article  CAS  Google Scholar 

  87. - andJ. Graham. 1954. The role of photosynthesis in the physiology of Ochromonas. Univ. Texas, Dept. Zool. [Mimeo.].

  88. — andJ. Johnston. 1949. Carbon and nitrogen balance ofChlorella during growth. Plant Physiol.24: 111–119.

    Article  PubMed  CAS  Google Scholar 

  89. Neish, A. C. 1951. Carbohydrate nutrition ofChlorella vulgaris. Canad. Jour. Bot.29: 68–78.

    CAS  Google Scholar 

  90. Nielsen, E. S. 1937. On the relation between quantities of phytoplankton and Zooplankton. Jour. Cons.12: 147–154.

    Google Scholar 

  91. — 1955. An effect of antibiotics produced by plankton algae. Nature176: 553.

    Article  PubMed  CAS  Google Scholar 

  92. Pearsall, W. H. 1932. Phytoplankton in the English lakes. II. The composition of the phytoplankton in relation to dissolved substances. Jour. Ecol.20: 241–262.

    Article  CAS  Google Scholar 

  93. Peterson, W. H., E. B. Fred, andB. T. Domogalla. 1925. The occurrence of amino acids and other organic nitrogen compounds in lake water. Jour. Biol. Chem.63: 287–295.

    CAS  Google Scholar 

  94. Pratt, R. 1942. Studies onChlorella vulgaris. V. Some properties of the growth inhibitor formed byChlorella cells. Amer. Jour. Bot.29: 142–148.

    Article  CAS  Google Scholar 

  95. — 1944. Studies onChlorella vulgaris. IX. Influence on the growth ofChlorella of continuous removal of chlorellin from the solution. Amer. Jour. Bot31: 418–421.

    Article  CAS  Google Scholar 

  96. —,T. C. Daniels, J. J. Eiler, J. B. Gunnison et al. 1944. Chlorellin, an antibacterial substance fromChlorella. Science99: 351.

    Article  PubMed  CAS  Google Scholar 

  97. Prescott, G. W. 1948. Objectionable algae, with reference to the killing of fish and other animals. Hydrobiologia1: 1.

    Article  Google Scholar 

  98. Pringsheim, E. G. 1937. Assimilation of different organic substances by saprophytic flagellates. Nature139: 196.

    Article  CAS  Google Scholar 

  99. — 1937. Beitrage zur physiologie saprophytischer Algen. I. Mitteilung:Chlorogonium undHyalogonium. Planta26: 631–664.

    Article  CAS  Google Scholar 

  100. — 1937. Beitrage zur Physiologie saprophytischer Algen und Flagellaten. III. Mitteilung:Polytoma u.Polytomella. Planta26: 665.

    Article  CAS  Google Scholar 

  101. -. 1946. Pure cultures of algae.

  102. — 1946. The biphasic or soil-water culture method for growing algae and flagellates. Jour. Ecol.33: 193–204.

    Article  Google Scholar 

  103. Provasoli, L., andI. J. Pintner. 1953. Ecological implications of in vitro nutritional requirements of algal flagellates. Ann. N. Y. Acad. Sci.56: 839–851.

    Article  PubMed  CAS  Google Scholar 

  104. Reazin, G. H. 1955. Studies in the physiology ofOchromonas malhamensis, a golden brown alga. Ph.D. Thesis, Univ. Mich. 142 pp.

  105. Rice, T. R. 1954. Biotic influences affecting population growth of planktonic algae. U. S. Fish & Wildlife Serv., Fish, Bull. 87.

  106. Riley, G. A. 1947. Seasonal fluctuations of the phytoplankton population in New England coastal waters. Jour. Mar. Res.6: 114–125.

    Google Scholar 

  107. — andD. E. Bumpus. 1947. Phytoplankton-zooplankton relationships on Georges Bank. Jour. Mar. Res.6: 33–47.

    Google Scholar 

  108. Robbins, W. J., A. Hervey, andM. E. Stebbins. 1950. Studies onEuglena and vitamin B12. Bull. Torrey Bot. Club77: 423–441.

    Article  Google Scholar 

  109. — 1951. Further observations onEuglena and B12. Bull. Torrey Bot. Club78: 363–375.

    Article  Google Scholar 

  110. Rodhe, W. 1941. Environmental requirements of plankton algae. Symb. Bot Ups.10: 1–149.

    Google Scholar 

  111. — 1955. Can plankton production proceed during winter darkness in subarctic lakes? Proc. Int. Assoc. Limn.12: 117–122.

    Google Scholar 

  112. Ruttner, F. 1953. Fundamentals of limnology.

  113. Ryther, J. H. 1954. Inhibitory effects of phytoplankton upon the feeding ofDaphnia magna with reference to growth, reproduction, and survival. Ecology35: 522–532.

    Article  Google Scholar 

  114. Sager, R., andS. Granick. 1953. Nutritional studies withChlamydomonas reinhardi. Ann. N. Y. Acad. Sci.56: 831–838.

    Article  PubMed  CAS  Google Scholar 

  115. Scott, R. M. 1952. Algal toxins. Public Works. March 54–55; 65–66.

  116. Shelubsky, M. 1951. Observations on the properties of a toxin produced byMicrocystis. Proc. Int. Assoc. Limn.11: 362–366.

    Google Scholar 

  117. Shilo (Shelubsky), M., andM. Aschner. 1953. Factors governing the toxicity of cultures containing the phytoflagellatePrymnesium parvum. Jour. Gen. Microbiol.8: 333–343.

    Google Scholar 

  118. Shilo, M., andM. Shilo. 1955. Control of the phytoflagellatePrymnesium parvum. Proc. Int. Assoc. Limn.12: 233–240.

    Google Scholar 

  119. Stewart, J., andC. D. Leonard. 1954. What chelates are. Nat. Fert. Rev.

  120. Sussman, A. S. 1954. Changes in the permeability of ascospores ofNeurospora tetrasperma during germination. Jour. Gen. Physiol.38: 59–77.

    Article  CAS  Google Scholar 

  121. Sweeney, B. 1954.Gymnodinium splendens, a marine dinoflagellate requiring vitamin B12. Amer. Jour. Bot.41: 821–824.

    Article  CAS  Google Scholar 

  122. Taylor, P. J. 1950. Oxidative assimilation of glucose byScenedesmus quadricauda. Jour. Exp. Bot.1: 301–321.

    Article  Google Scholar 

  123. Vallentyne, J. R. 1954. Biochemical limnology. Science, April 30: 605–606.

  124. Van Hillé, J. C. 1938. The quantitative relation between the rate of photosynthesis and chlorophyll content inChlorella pyrenoidosa. Rec. Trav. Bot. Néerl.35: 682–757.

    Google Scholar 

  125. Wangersky, P. 1952. The isolation of ascorbic acid and rhamnosides from sea water. Science115: 685.

    Article  PubMed  Google Scholar 

  126. Waris, H. 1953. The significance for algae of chelating substances in the nutrient solutions. Physiol. Plant.6: 538–543.

    Article  CAS  Google Scholar 

  127. Watanabe, A. 1937. Untersuchungen über Substrate für Sauerstoffatmung von Süsswasser und Meeresalgen Beitrage zur stoffwechselphysiologie der Algen. II. Acta. Phytochem. [Tokyo]9: 235–254.

    CAS  Google Scholar 

  128. — 1951. Production in cultural solution of some amino acids by the atmospheric nitrogen fixing blue green algae. Arch. Biochem. Biophys.34: 50–55.

    Article  CAS  Google Scholar 

  129. Webster, G. C. 1950. Studies on the respiration of blue green algae. Amer. Jour. Bot.37: 682.

    Google Scholar 

  130. Weinstein, L. H., W. R. Robbins, andH. F. Perkins. 1954. Chelating agents and plant nutrition. Science120: 41–43.

    Article  PubMed  CAS  Google Scholar 

  131. Welch, P. S. 1952. Limnology.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, G.W. Interrelations of dissolved organic matter and phytoplankton. Bot. Rev 23, 389–409 (1957). https://doi.org/10.1007/BF02872327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872327

Keywords

Navigation