Skip to main content
Log in

Fully diagnosing the spatial properties of X-ray lasers

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it possible, in a one-shot experimental measurement, to determine the beam quality factor M2, the effective radius of curvature, the beam width, the far-field divergence, and the waist location and radius as well as the spatial coherence and its evolution. Numerical simulation proves the validity of the method. Note that the novel moiré technique opens an efficient road, for the first time, to fully diagnose the spatial properties of X-ray lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthews, D., Rosen, M., Brown, S. et al., X-ray laser research at the Lawrence Livermore National Laboratoy Nova laser facility, J. Opt. Soc. Am. B, 1987, 4(4): 575.

    Google Scholar 

  2. Wang, S., Guan, Y., Zhou, G. et al., Experimental investigation of high-gain Ne-like Ge soft-X-ray laser by double-massive-target coupling, Sci. in Chin. (in Chinese), Ser. A, 1991, (2): 151.

  3. Wang, S., Guan, Y., Zhou, G. et al., Experiment research on saturated-gain for soft X-ray laser from neon-like germanium plasma, Chin. Phys. Lett., 1991, 8(12): 618.

    Google Scholar 

  4. Kodama, R., Neely, D., Kato, Y. et al., Generation of small-divergence soft X-ray laser by plasma waveguiding with a curved target, Phys. Rev. Lett., 1994, 73(24): 3215.

    Article  Google Scholar 

  5. Carillon, A., Chen, H. Z., Dhez, P. et al., Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm, Phys. Rev. Lett., 1992, 68(19): 2917.

    Article  Google Scholar 

  6. Nilsen, J., Moreno, J. C., Nearly monochromatic lasing at 182A in neonlike selenium, Phys. Rev. Lett., 1995, 74(17): 3376.

    Article  Google Scholar 

  7. Zhang, J., MacPhee, A. G., Lin, J. et al., A saturated X-ray laser beam at 7 nanometers, Science, 1997, 276: 1097.

    Article  Google Scholar 

  8. Bélanger, P. A., Beam propagation and the ABCD ray matrices, Opt. Lett., 1991, 16(4): 196.

    Google Scholar 

  9. Trebes, J. E., Nugent, K. A., Mrowka, S. et al., Measurement of the spatial coherence of a soft-X-ray laser, Phys. Rev. Lett., 1992, 68(5): 588.

    Article  Google Scholar 

  10. Lu, P., Fill, E., Li, Y. et al., Spatial coherence of prepulse-induced neonlike X-ray lasers, Phys. Rev. A, 1998, 58(1): 628.

    Article  Google Scholar 

  11. Albert, F., Rus, B., Zeitoun, Ph. et al., New approach for measurement of the X-ray laser transverse coherence, in 5th Int. Conf. on X-Ray Lasers, Lund, Sweden: IOP Publishing Ltd., 1996, 427.

    Google Scholar 

  12. Celliers, P., Weber, F., Da Silva, L. B. et al., Fringe formation and coherence of a soft-X-ray laser beam illuminating a mach-zehnder interferometer, Opt. Letts., 1995, 20(18): 1907.

    Google Scholar 

  13. Karny, Z., Lavi, S., Kafri, O., Direct determination of the number of transverse modes of a light beam, Opt. Lett., 1983, 8(7): 409.

    Google Scholar 

  14. Liu Liren, Talbot and Lau effects on incident beams of arbitrary wavefront, and their use, Appl. Opt., 1989, 28(21): 4668.

    Google Scholar 

  15. Deng, X., Guo, H., Cao, Q., The invariable integral and statistical equations for a paraxial beam in free space, Sci. in China (in Chinese), Ser. A, 1997, 27(1): 64.

    Google Scholar 

  16. Keren, E., Kafri, O., Diffraction effects in moiré deflectometry, J. Opt. Soc. Am. A, 1985, 2(2): 111.

    Google Scholar 

  17. Carter, W. H., Wolf, E., Coherence and radiometry with quasihomogeneous planar sources, J. Opt. Soc. Am., 1977, 67(6): 785.

    Google Scholar 

  18. Bastiaans, M. J., Application of the Wigner distribution function to partially coherent light, J. Opt. Soc. Am. A, 1986, 3(8): 1227.

    Google Scholar 

  19. London, R. A., Strauss, M., Rosen, M. D., Modal analysis of X-ray laser coherence, Phys. Rev. Lett., 1990, 65(5): 563.

    Article  Google Scholar 

  20. Feit, M. D., Fleck Jr., J. A., Wave-optics description of laboratory soft-X-ray lasers, J. Opt. Soc. Am. B, 1990, 7(10): 2048.

    Article  Google Scholar 

  21. Yang, J., Fan, D., Wang, S. et al., Generalized matrix-optics description of soft-X-ray lasers, J. Opt. Soc. Am. B, 1999, 16(6): 1016.

    Article  Google Scholar 

  22. Nugent, K. A., Trebes, J. E., Coherence measurement technique for short-wavelength light sources, Rev. Sci. Instrum., 1992, 63(4): 2146.

    Article  Google Scholar 

  23. Afshar-rad, T., Willi, O., A novel technique for X-ray laser beam characterization, Appl. Phys. B, 1990, 50: 287.

    Article  Google Scholar 

  24. Gori, F., Mode propagation of the field generated by Collett-Wolf Schell-model sources, Opt. Comm., 1983, 46: 149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Sun, J., Wang, T. et al. Fully diagnosing the spatial properties of X-ray lasers. Sci. China Ser. A-Math. 44, 103–112 (2001). https://doi.org/10.1007/BF02872289

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872289

Keywords

Navigation