Skip to main content
Log in

High-density operation in tokamaks

  • Published:
La Rivista del Nuovo Cimento (1978-1999) Aims and scope

Conclusion

In this paper we have examined various aspects regarding high-density operation in tokamaks and in particular the density limit, the plasma detachment, the MARFE formation and the fuelling efficiency. As regarding the density limit, both experimental findings and theoretical model indicate that the plasma current and the total input power are relevant in limiting the edge density that can be sustained in a tokamak discharge: radiation losses and SOL momentum and energy conservation are the underlying mechanisms. In the latest divertor experiments, operating in the detached regime, the influence of the input power seems to vanish or even disappear. Edge phenomena such as plasma detachment, occurring beyond a density threshold that can be lowered by means of impurity injection, can lead to the almost complete exhausting of the heating power by radiation which is greatly helpful for the design of the divertor plates. The compatibility of H-mode operation with this regime is still under investigation. The MARFE phenomenon, sometimes precursor of a major disruption, is now understood in terms of a radiation induced thermal instability. Finally, experiments performed in order to investigate the fuelling efficiency of the gas puffing technique have shown that at high density this technique becomes rather inefficient, thus indicating that pellet injection still remains an essential requirement to fuel the reactor plasma. The drop of the fuelling efficiency of gas-puffing at high density can be accounted for by collision phenomena taking place in the SOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawson J. D.,Proc. Phys. Soc. B,70 (1957) 6.

    Article  ADS  Google Scholar 

  2. Wesson J.,Tokamaks, 2nd edition (Oxford University Press, Oxford UK) 1997.

    Google Scholar 

  3. Janeshitz G.,Plasma Phys. Control. Fusion,37 (1995) A19.

    Article  Google Scholar 

  4. Coppi B., Airoldi A., Bombarda F. et al., inFusion Energy 1996, Proceedings of the 16th International Conference Montreal, 1996, vol.3 (IAEA, Vienna) 1997;Coppi B.,Nassi M. andSugiyama L. E.,Physica Scripta,45 (1992) 112.

    Google Scholar 

  5. Apicella M. L., Apruzzese G., Borra M. et al., Nucl. Fus.,37 (1997) 381.

    Article  ADS  Google Scholar 

  6. Stix T. H.,Plasma Phys.,14 (1972) 367.

    Article  ADS  Google Scholar 

  7. La Haye R. J.,Callen J. D., Chu M. S. et al., inFusion Energy 1996, Proceedings of the 16th International Conference Montreal, 1996, vol.1 (IAEA, Vienna) 1997, p. 747.

    Google Scholar 

  8. Gondhalekar A., inPlasma Physics and Controlled Nuclear Fusion Research 1978, Proceedings of the 1th International Conference Innsbruck, 1978, vol.1 (IAEA, Vienna) 1979, p. 199.

    Google Scholar 

  9. Alladio F., Apicella M. L., Apruzzese G. et al., inPlasma Physics and Controlled Nuclear Fusion Research 1994, Proceedings of the 15th International Conference Seville, 1994, vol.2, (IAEA, Vienna) 1995, p. 23.

    Google Scholar 

  10. Sestero A.,Com. Plasma Phys. Contr. Fus.,17 (1997) 341.

    Google Scholar 

  11. Murakami M., Callen J. D. andBerry L. A.,Nucl. Fusion Lett.,16 (1976) 347.

    Article  ADS  Google Scholar 

  12. Hugill J.,High Density Operation in Dite with Neutral Beam Injection, Report CLM-R239, UKAEA, Culham (1983).

    Google Scholar 

  13. Alladio F., Bardotti G. andBartiromo R.,Nucl. Fusion,26 (1986) 11.

    Article  Google Scholar 

  14. Greenwald M., Terry J. L., Wolfe S. M. et al., Nucl. Fusion,28 (1988) 2199.

    Article  Google Scholar 

  15. Petrie T. W., Kellman A. G. andAli Mahdavi M.,Nucl. Fusion,33 (1993) 929.

    Article  ADS  Google Scholar 

  16. Milora S. L., Houlberg W. H., Lengyel L. L. andMertens V.,Nucl. Fusion,35 (1995) 657.

    Article  ADS  Google Scholar 

  17. Kamada Y., Hosogane N., Yoshino R. et al., Nucl. Fusion,31 (1991) 1827.

    Article  Google Scholar 

  18. Stabler A., McCormick K., Mertens V. et al., Nucl. Fusion,32 (1992) 1557.

    Article  ADS  Google Scholar 

  19. Frigione D. andPieroni L.,Density Limit in FTU during 90–91 Operation. ENEA report RT/NUCL/92/40.

  20. Frigione D., Pieroni L., Zanza V. et al., Nucl. Fusion,36 (1996) 1489.

    Article  ADS  Google Scholar 

  21. JETTeam, (presented bySmeulders P.,), inPlasma Physics and Controlled Nuclear Fusion Research 1990, Proceedings of the 13th International Conference Seville, 1990, vol.1, (IAEA, Vienna) 1991, p. 219.

    Google Scholar 

  22. Wagner F., Becher G., Behringer K. et al., Phys Rev. Lett.,49 (1982) 1408.

    Article  ADS  Google Scholar 

  23. Mertens V., Herrmann A., Kallenback A. et al., inFusion Energy 1996, Proceedings of the 16th International Conference Montreal, 1996, vol.1 (IAEA, Vienna) 1997, p. 413.

    Google Scholar 

  24. Lang P.T.,Buchl K.,Kaufmann M.et al., Pellet Injection into Asdex Upgrade Plasmas with Improved Scenario from the Magnetic High Field Side, Max PlanckIPP report 1/304 (1996).

  25. Pegourie B. andGarzotti L., inControlled Fusion and Plasma Physics, Proceedings of the 24th EPS Conference, Berchtesgaden, 1997, part 1 (European Physical Society, Geneva) 1997, p. 153.

    Google Scholar 

  26. Shuller F.C.,Plasma Phys Contr. Fusion,37 (1995) A135.

    Article  ADS  Google Scholar 

  27. Spitzer L. andHarm, R.,Phys. Rev.,89 (1953) 977.

    Article  ADS  MATH  Google Scholar 

  28. Alladio F., Apicella M. L., Apruzzese G. et al., inPlasma Physics and Controlled Nuclear Fusion Research 1994, Proceedings of the 15th International Conference Seville, 1994, vol.2 (IAEA, Vienna) 1995, p. 23.

    Google Scholar 

  29. Bracco G. andThomsen K.,Nucl. Fusion,37 (1997) 759.

    Article  ADS  Google Scholar 

  30. Allen J., Austin G. E., Axon K. D. et al., inPlasma Physica and Controlled Nuclear Fusion Research 1986, Proceedings of the 11th Int. Conference Kyoto, 1986, vol.1 (IAEA, Vienna) 1987, p. 227.

    Google Scholar 

  31. Borras K.,Nucl. Fusion,31 (1991) 1035.

    Article  Google Scholar 

  32. Borras K., Campbell D. J., Clement S. et al., Nucl. Fusion,33 (1993) 63.

    Article  ADS  Google Scholar 

  33. Borras K., Schneider R. andFarengo R.,Nucl. Fusion,37 (1997) 523.

    Article  ADS  Google Scholar 

  34. Pitcher C. S. andStangeby P. C.,Plasma Phys. Control. Fusion,39 (1997) 779.

    Article  ADS  Google Scholar 

  35. LaBombard B., Goetz J., Kurz C. et al., Phys. Plasmas,2 (1995) 2242.

    Article  ADS  Google Scholar 

  36. Schivell J.,Rev. Sci. Instrum.,58 (1987) 12.

    Article  ADS  Google Scholar 

  37. Terry J. L., Marmar E. S., Wolfe S. M. et al., Bull. Am. Phys. Soc.,26 (1981) 886.

    Google Scholar 

  38. Lipshultz B. et al., Nucl. Fusion,24 (1984) 977.

    Article  Google Scholar 

  39. Alladio F., Bartiromo R., Casali B. et al., Phys. Lett. A,90 (1982) 405.

    Article  ADS  Google Scholar 

  40. Lipshultz B.,J. Nucl. Mat.,145 (1987) 15.

    Article  ADS  Google Scholar 

  41. Stringer T. E., inControlled Fusion and Plasma Physics, Proceedings of the 12th EPS Conference Budapest, 1985, part 1 (European Physical Society, Geneva) 1997, p. 86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigione, D. High-density operation in tokamaks. Riv. Nuovo Cim. 22, 1–37 (1999). https://doi.org/10.1007/BF02872267

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872267

Navigation