Skip to main content
Log in

Simulation of capillary flow with a dynamic contact angle

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

A number of theoretical and empirical dynamic contact angle (DCA) models have been tested in a numerical simulation of liquid reorientation in microgravity for which experimental validation data are available. It is observed that the DCA can have a large influence on liquid dynamics in microgravity. Correct modelling of the DCA is found to be essential for realistic numerical simulation, and hysteresis effects cannot be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Worth: NEAR team recovers mission after faulty engine burn. Available at http://near.jhuapl.edu/news/articles/99jan29 1 (1999).

  2. NEAR Anomaly Review Board: The NEAR Rendezvous burn anomaly of December 1998. Johns Hopkins University, Applied Physics Laboratory (November 1999).

  3. Abramson, H.N. (Ed.): The dynamic behaviour of liquids in moving containers. NASA SP-106, Washington DC (1966).

  4. Dussan V., E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech., vol. 11, p 371–400 (1979).

    Article  Google Scholar 

  5. Shikhmurzaev, Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow, vol. 19, p. 589–610 (1993).

    Article  MATH  Google Scholar 

  6. Blake, T.D.: Dynamic contact angles and wetting kinetics. In: Wettability, Berg, J.C. (Ed.), Marcel Dekker, New York. p. 251–309 (1993)

    Google Scholar 

  7. Jiang, T.S., Oh, S.G., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sc., vol. 69, p. 74–77 (1979).

    Article  Google Scholar 

  8. Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Progr. Colloid Pol. Sc., vol. 79, p. 142–149 (1989).

    Article  Google Scholar 

  9. Seeberg, J.E., Berg, J.C.: Dynamic wetting in the flow of capillary number regime. Chem. Eng. Sc., vol. 47, p. 4455–4464 (1992).

    Article  Google Scholar 

  10. Fan, H., Gao, Y.X., Huang, X.Y.: Thermodynamics modelling for moving contact line in gas/liquid/solid system: capillary rise problem revisited. Phys. Fluids, vol. 13, p. 1615–1623 (2001).

    Article  Google Scholar 

  11. Zhang, J., Kwok, D.Y.: Lattice-Boltzmann study on the contact angle and contact line dynamics of liquid-vapour interfaces. Langmuir, vol. 20, p. 8137–8141 (2004).

    Article  Google Scholar 

  12. Michaelis, M.: Kapillarinduzierte Schwingungen freier Flüssigkeitsoberflächen. Fortschritt-Bericht VDI 454, VDI Verlag, Düsseldorf (2003).

    Google Scholar 

  13. Michaelis, M., Dreyer, M.E.: Test-case number 31: reorientation of a free liquid interface in a partly filled right circular cylinder upon gravity step reduction. Multiphase Science and Technology vol.,6 p. 219–238 (2004).

    Article  Google Scholar 

  14. Shikhmurzaev, Y.D.: Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech., vol. 334, p. 211–249 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamraoui, A., Thuresson, K., Nylander, T., Yaminsky, V.: Can a dynamic contact angle be understood in terms of a friction coefficient? J. Colloid Interface Sc., vol. 226, p. 199–204 (2000).

    Article  Google Scholar 

  16. Billingham, J.: Nonlinear sloshing in zero gravity. J. Fluid Mech, vol. 464, p. 365–391 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. Wölk, G., Dreyer, M., Rath, H.J., Weislogel, M.M.: Damped oscillations of a liquid/ gas surface upon step reduction in gravity. J. Spacecraft Rockets, vol. 34, p. 110–117 (1997).

    Article  Google Scholar 

  18. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., vol. 39, p. 201–225 (1981).

    Article  MATH  Google Scholar 

  19. Gerrits, J.: Dynamics of liquid-filled spacecraft. PhD thesis, University of Groningen (2001). Available at www.ub.rug.nl/eldoc/dis/science/j.gerrits

  20. Van Mourik, S.: Numerical modelling of the dynamic contact angle. Master’s thesis, University of Groningen (2002).

  21. Gerrits, J., Veldman, A.E.P.: Dynamics of liquid-filled spacecraft. J. Eng. Math., vol. 45, p. 21–38 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretisation of turbulent flow. J. Comput. Physics, vol. 187, p. 343–368 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., Buchner, B.: A Volumeof- Fluid based simulation method for wave impact problems. J. Comput. Physics, vol. 206, p. 363–393 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Mourik, S., Veldman, A.E.P. & Dreyer, M.E. Simulation of capillary flow with a dynamic contact angle. Microgravity Sci. Technol 17, 87–93 (2005). https://doi.org/10.1007/BF02872093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872093

Keywords

Navigation