Abstract
A number of theoretical and empirical dynamic contact angle (DCA) models have been tested in a numerical simulation of liquid reorientation in microgravity for which experimental validation data are available. It is observed that the DCA can have a large influence on liquid dynamics in microgravity. Correct modelling of the DCA is found to be essential for realistic numerical simulation, and hysteresis effects cannot be ignored.
Similar content being viewed by others
References
H. Worth: NEAR team recovers mission after faulty engine burn. Available at http://near.jhuapl.edu/news/articles/99jan29 1 (1999).
NEAR Anomaly Review Board: The NEAR Rendezvous burn anomaly of December 1998. Johns Hopkins University, Applied Physics Laboratory (November 1999).
Abramson, H.N. (Ed.): The dynamic behaviour of liquids in moving containers. NASA SP-106, Washington DC (1966).
Dussan V., E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech., vol. 11, p 371–400 (1979).
Shikhmurzaev, Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow, vol. 19, p. 589–610 (1993).
Blake, T.D.: Dynamic contact angles and wetting kinetics. In: Wettability, Berg, J.C. (Ed.), Marcel Dekker, New York. p. 251–309 (1993)
Jiang, T.S., Oh, S.G., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sc., vol. 69, p. 74–77 (1979).
Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Progr. Colloid Pol. Sc., vol. 79, p. 142–149 (1989).
Seeberg, J.E., Berg, J.C.: Dynamic wetting in the flow of capillary number regime. Chem. Eng. Sc., vol. 47, p. 4455–4464 (1992).
Fan, H., Gao, Y.X., Huang, X.Y.: Thermodynamics modelling for moving contact line in gas/liquid/solid system: capillary rise problem revisited. Phys. Fluids, vol. 13, p. 1615–1623 (2001).
Zhang, J., Kwok, D.Y.: Lattice-Boltzmann study on the contact angle and contact line dynamics of liquid-vapour interfaces. Langmuir, vol. 20, p. 8137–8141 (2004).
Michaelis, M.: Kapillarinduzierte Schwingungen freier Flüssigkeitsoberflächen. Fortschritt-Bericht VDI 454, VDI Verlag, Düsseldorf (2003).
Michaelis, M., Dreyer, M.E.: Test-case number 31: reorientation of a free liquid interface in a partly filled right circular cylinder upon gravity step reduction. Multiphase Science and Technology vol.,6 p. 219–238 (2004).
Shikhmurzaev, Y.D.: Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech., vol. 334, p. 211–249 (1997).
Hamraoui, A., Thuresson, K., Nylander, T., Yaminsky, V.: Can a dynamic contact angle be understood in terms of a friction coefficient? J. Colloid Interface Sc., vol. 226, p. 199–204 (2000).
Billingham, J.: Nonlinear sloshing in zero gravity. J. Fluid Mech, vol. 464, p. 365–391 (2002).
Wölk, G., Dreyer, M., Rath, H.J., Weislogel, M.M.: Damped oscillations of a liquid/ gas surface upon step reduction in gravity. J. Spacecraft Rockets, vol. 34, p. 110–117 (1997).
Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., vol. 39, p. 201–225 (1981).
Gerrits, J.: Dynamics of liquid-filled spacecraft. PhD thesis, University of Groningen (2001). Available at www.ub.rug.nl/eldoc/dis/science/j.gerrits
Van Mourik, S.: Numerical modelling of the dynamic contact angle. Master’s thesis, University of Groningen (2002).
Gerrits, J., Veldman, A.E.P.: Dynamics of liquid-filled spacecraft. J. Eng. Math., vol. 45, p. 21–38 (2003).
Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretisation of turbulent flow. J. Comput. Physics, vol. 187, p. 343–368 (2003).
Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., Buchner, B.: A Volumeof- Fluid based simulation method for wave impact problems. J. Comput. Physics, vol. 206, p. 363–393 (2005).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
van Mourik, S., Veldman, A.E.P. & Dreyer, M.E. Simulation of capillary flow with a dynamic contact angle. Microgravity Sci. Technol 17, 87–93 (2005). https://doi.org/10.1007/BF02872093
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02872093