Skip to main content
Log in

Preparation of giant magnetostrictive materials under microgravity condition

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we investigated the possibility of preparation of TbFe2 giant magnetostrictive alloys under a microgravity condition using 6 m drop-tube system on basis of a feasibility study by JAMIC drop-tower. The diameters of TbFe2 alloy droplets varied from 1.1 to 2.1 mm were obtained. The magnetostriction of 1.1 mm droplet shows the highest value of about 1600 ppm at external magnetic field of 15 kOe. The magnetostriction of TbFe2 droplets increased with decreasing diameter. It was suggested that a cooling rate during free-fall in helium gas atmosphere and oil quenching influenced the magnetostriction of the samples. We concluded that 6 m drop-tube system could be potential the continuous preparation process for high performance TbFe2 giant magnetostrictive alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Clark, Magnetostrictive rare earth-Fe2 compounds, (ed. E.P. Wohlfarth, North-Holland Publishing Company, Amsterdam), Ferromagnetic Materials, 1 (1980) 531–581.

    Google Scholar 

  2. J.P. Teter, O. D. McMasters, A. E. Clerk,: Anisotropic magnetostriction in Tb0.27Dy0.73Fel.95. J. Appl. Phys., 61(8) (1987) 3787–3789.

    Article  Google Scholar 

  3. A. E. Clark et al.: Ferromagnetic Materials, ed. E. P. Wohlfarth, North-Holland Publishing Co., Amsterdam, (1980) 531.

    Google Scholar 

  4. O. Bonino, P. De. Rango, andR. Tournier,: 〈110〉 Directional growth of polycrystalline magnetostrictive TbxDy1−xFey compounds by casting in a strong unidirectional gradient. J. Magn. Magn. Mater., 212 (2000) 225–230.

    Article  Google Scholar 

  5. Y.J. Bi, J.S. Abell, andA.M.H. Hwang,: Defects in Terfenol-D crystal. J. Magn. Magn. Mater., 99 (1991) 159–166.

    Article  Google Scholar 

  6. Wu. Mei, T. Umeda, S. Zhou, andR. Wang,: Magnetostriction of grainaligned Tb0.3Dy0.7Fe1.95. J. Alloys Compounds, 224 (1995) 76–80.

    Article  Google Scholar 

  7. Wu. Mei, T. Okane, T. Umeda, andS. Zhou,: Directional solidification of Tb-Dy-Fe magnetostrictive alloy. J. Alloys Compounds. 248 (1997) 151–158.

    Article  Google Scholar 

  8. Wu. Mei, M. Yoshizumi, T. Okane, andT Umeda,: Crystal growth of giant magnetostrictive Tb-Dy-Fe alloy. J. Alloys Compounds. 258 (1997) 34–38.

    Google Scholar 

  9. O.D. McMasters, J.D. Verhoeven, andE.D. Gibson,: Preparation of Terfenol-D by Float Zone Solidification. J. Magn. Magn. Mater. 54–57 (1986) 849–850.

    Article  Google Scholar 

  10. J.D. Verhoeven, E.D. Gibson, O.D. McMasters, andH.H. Baker,: The Growth of Single Crystal Terfenol-D Crystals. Metall. Trans. A, 18A (1987) 223–231.

    Google Scholar 

  11. J.D. Verhoeven, E.D. Gibson, O.D. McMasters, andJ.E. Ostenson,: Directional Solidification and Heat Treatment of Terfenol-D Magnetostrictive Materials. Metall. Trans. A, 21A (1990) 2249–2255.

    Google Scholar 

  12. A.E. Clark, J.D. Verhoven, O.D. McMasters, andE.D. Gibson,: Magnetostriction in twinned [112] crystals of Tb.27Dy.73Fe2. IEEE Trans. on Magn. 22 (1986) 973–975.

    Article  Google Scholar 

  13. W. Je. Park, J. Chul. Kim, B. June. Ye, and Z. Hyoung. Lee,: Macrosegregation in Bridgman growth of Terfenol-D and effects of annealing. J. of Crystal Growth, 212 (200) 283–290.

  14. B. Feuerbacher, H. Hamacher and R. J. Naumann: Materials Science in Space, Springer-Verlag (1986).

  15. K. Ishida, M. Takeuchi, T. Haraki, Y. Matsumura andH. Uchida,: Preparation Of Tb-Fe giant magnetostrictive alloys under microgravity conditions. J. Adv. Sci., 13 (3) (2001), 431–433.

    Google Scholar 

  16. K. Ishida T. Haraki, H. Uchida, Y. Matsumura, T. Kuji, H. Minagawa, T. Okutani, K. Kamada,: Unidirectional solidification of Tb-Fe giant magnetostrictive alloys under microgravity conditions. Proc. SPIE Smart Materials II, SPIE’S Int. Symp., 4934 (2002) 332–339.

    Google Scholar 

  17. S. Kano, Y. Hashimoto, Y. Takeda, K. Ishida, Y. Matsumura,: unidirectional solidification of Tb-Fe giant magnetostriction allos under microgravity conditions. J. Adv. Sci., 5 (1 & 2) (2003) 1–5.

    Google Scholar 

  18. N. D. Evans, W. H. Hofmeister, R. J. Bayuzick andM. B. Ronbinson,: Solidification of niobium-germanium allos in ling drop tubes. Met. Trans. A, 17 A (1986) 973–981.

    Article  Google Scholar 

  19. A. Munitz andR. Abbaschian,: Two-melt separation in supercooling copper-cobalt alloys solidifying in a drop-tube. J. Metall. Sci., 26 (1991) 6458–6466.

    Google Scholar 

  20. E. W. Collings and C. C. Koch, Undercooled Alloy Phases, The Metallurgical Society, New Orleans, 207–231.

  21. D. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht andA. L. Greer,: Containerless processing in study of metallic melts and their solidification. Inter. Mater. Rev., 38 (1993) 273–280.

    Google Scholar 

  22. S. C. Sharma, T. Volkmann andD. M. Herlach,: Microstructural development in drop-tube-solidified Al-3.6 wt. % Fe droplets: an analysis. Mater. Sci. Eng., A171 (1993) 169–173.

    Google Scholar 

  23. T. Okutani, H. Minagawa, H. Nagai, Y. Nakata, M. Suzuki, Y. Ito, T. Tsurue andK. Ikezawa,: Synthesis of crystalline materials with high quality under short-time microgravity. Ceram. Eng. Sci. Proc., 20 (1999) 215–226.

    Article  Google Scholar 

  24. A.C. Tam, andH. Schroeder, "A New High-Precision Optical Techinique to Measure Magnetostriction of a Thin Magnetic Film Deposited on a Substrate," IEEE Trans. on Magn., Vol.25, No.3, (1989), 2629–2638.

    Article  Google Scholar 

  25. A.E. Clark, T. R. Cullen andK. Sato,: Magnetostriction of single crystal and polycrystal rare earth-Fe2 compounds. AIP Conf. Proc. Am. Inst. Phys., 24 (1975) 670–671.

    Google Scholar 

  26. T. Oike, S. Ishio andT. Miyazaki,: Giant Magnetostriction od Rapidly Quenched (Tb0.3Dy0.7)Fe2 Ribbons Prepared at Variou Quenching Rates. J. Magn. Coc. Jpn., 18, (6), (1994) 991–995

    Google Scholar 

  27. A. Takai, Y. Matsui, J. Yamamoto and F. Ohba,: Development of N2M-800, a Giant-magnetostrictive material by sinter process. Proc. The 16th Symposium on Electromagnetics and Dynamics, 04-251 (2004) 33–34

  28. C. Bright,: Design comparison of traditional Piezoceramics and Terfenol-D. ETREMA Inc. (1999).

  29. T. Tanaka, H. Arimura, S. Kikuchi, S. Sugimoto, M. Okada, M. Homma andK. Arai,: Magnetostrictive properties of finely crystallized (Tb, Dy)-Fe-B alloys. J. Jpn. Inst. Metals. Vol. 59, No.4, (1995) 445–455

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Matsumura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, S., Matsumura, Y., Uchida, H. et al. Preparation of giant magnetostrictive materials under microgravity condition. Microgravity Sci. Technol 17, 82–86 (2005). https://doi.org/10.1007/BF02872092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872092

Keywords

Navigation