Abstract
A methodology for estimating the extinction factor at λ=530 nm in diffusion flames is presented. All experiments have been in microgravity and have as their objective the production of quantitative data that can serve to evaluate the soot volume fraction. A better understanding of soot formation and radiative heat transfer is of extreme importance to many practical combustion related processes such as spacecraft fire safety. The experimental methodology implements non-axisymmetric configurations that provide a laminar diffusion flame at atmospheric pressure. PMMA is used as fuel. The oxidizer flows parallel to its surface. Optical measurements are performed at the 4.74 s ZARM drop tower.
Similar content being viewed by others
References
Olson, S.L. andT’ien, J.S.: Buoyant Low-Stretch Diffusion Flames beneath Cylindrical PMMA Samples, Combust. Flame, 121 (3), 439 (2000).
Megaridis, C.M., Konsur, B., andGriffin, D.W., Proc. Combust. Inst., 26, 1291 (1996).
Fernandez-Pello, A.C., Walther, D.C., Cordova, J.L., Steinhaus, T., Quintiere, J.G., Torero, J.L., andRoss, H.: Test Method for Ranking Materials Flammability in Reduced Gravity, Space Forum, 6, 237 (2000).
Torero, J.L., Vietoris, T., Legros, G., andJoulain, P.: Estimation of a Total Mass Transfer Number from the Stand-Off Distance of a Spreading Flame, Combust. Sci. Technol., 174 (11–12), 187 (2002).
Law, C. K., andFaeth, G. M., Prog. Energy Combust. Sci. 20: 65 (1994).
Sunderland, P.B., Mortazavi, S., Faeth, G.M., andUrban, D.L.: Laminar Smoke-Point of Nonbuoyant Jet Diffusion Flames, Combust. Flame, 96, 97 (1994).
Urban, D.L., Griffin, D.W., andGard, M.Y.: Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames, Proc. Combust. Inst., 28, 1965 (2000).
Konsur, B., Megaridis, C.M., andGriffin, D.W.: Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g, Combust. Flame, 116 (3), 334 (1999).
Konsur, B., Megaridis, C.M., andGriffin, D.W.: Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames, Combust. Flame, 118 (4), 509 (1999).
Mortazavi, S., Sunderland, P.B., Jurng, J., Köylü, Ü.Ö., and Faeth, G.M.: Structure of Soot-Containing Laminar Jet Diffusion Flames, AIAA paper, 93–0708 (1993).
Vietoris, T., Ellzey, J.L., Joulain, P., Mehta, S.N., andTorero, J.L. (2000) Laminar Diffusion Flame in Micro-Gravity: the Results of the Mini-Texus 6 Sounding Rocket Experiment, Proc. Combust. Inst., 28, 2883.
Brahmi, L., Vietoris, T., Joulain, P., andTorero, J.L.: Détermination par caméra infrarouge des distributions de température sur l’enveloppe d’une flamme de diffusion établie sur un brûleur plat en microgravité, Entropie, 215, 69 (1998).
Rouvreau, S., Joulain, P., Wang, H.Y., Cordeiro, P., andTorero, J.L.: Numerical Evaluation of Boundary Layer Assumptions Used for the Prediction of the Stand-Off Distance of a Laminar Diffusion Flame, Proc. Combust. Inst., 29, 2527 (2002).
ZARM FABmbH: ZARM Drop Tower Bremen, User Manual, (2003).
Sivathanu, Y. R., andFaeth, G. M.: Soot Volume Fractions in the Overfire Region of Turbulent Diffusion Flames, Combust. Flame 81:150 (1990).
Siegel, R., and Howell, J.R.: Thermal Radiation Heat Transfer second edition, Hemisphere Publishing Corporation, (1981).
Dalzell, W.H. andSarofim, A.F.: Optical Constants of Soot and their Applications to Heat Flux Calculations, J. Heat Transfer, 91, 100 (1969).
Legros, G., Joulain P., Vantelon, J.P., Breillat, C., and Torero, J.L.: Estimation of a Soot Layer Optical Thickness Produced by a Diffusion Flame Established in Microgravity, Proc. Third Mediterranean Combustion Symposium, 557 – 568 (2003).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fuentes, A., Legros, G., Joulain, P. et al. Evaluation of the extinction factor in a laminar flame established over a PMMA plate in microgravity. Microgravity Sci. Technol 17, 10–14 (2005). https://doi.org/10.1007/BF02872082
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02872082