Skip to main content
Log in

Investigation of the influence of free convection on the heat transfer of cylinders with different aspect ratios

  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Electrically heated cylindrical wires are used in research and industry for fluid velocity and turbulence measurements. At very low free-stream velocities (u≤0.1 m/s), hot-wire measurements are significantly influenced by buoyant convection. Below a certain Reynolds number Re* this effect degrades the accuracy of the measurements. To assess the contribution of free-convection heat transfer to the heat balance of hot-wires in cross flow, measurements under normal gravity and microgravity (µg) conditions are compared keeping all other parameters constant. Under gravity conditions, the acceleration of gravity, the hot-wire axis and the direction of the free stream are all perpendicular to each other. The microgravity experiments were carried out in the Drop-Tower Bremen in which the residual acceleration is less than 10−5 g during a period of 4.7 s. The present investigation is concerned with a velocity range of 0≤u≤0.35 m/s corresponding to a Reynolds number range Re<0.1 in standard air. This range includes pure free convection for Re→0 and forced-convection-dominated heat transfer for Re=0.1. At intermediate Reynolds numbers both transport mechanisms must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Freymuth: Bibliography of thermal anemometry, TSI Inc., St. Paul, MN, USA, 1992.

    Google Scholar 

  2. H. H. Bruun: Hot-Wire Anemometry: Principles and Signal Analyses, Oxford University Press, 1995.

  3. M. A. Kegerise andE. F. Spina: A comparative study of constant-voltage and constant-temperature hot-wire anemometers: Part 2 — the dynamic response, Exp. in Fluids, vol. 29, pp. 165–177, 2000.

    Article  Google Scholar 

  4. D. C. Collis andM. J. Williams: Two-dimensional convection from heated wires at low Reynolds numbers, J. Fluid Mech., vol. 6, pp. 357–384, 1959.

    Article  MATH  Google Scholar 

  5. L. D. Landau and E. M. Lifschitz: Hydrodynamik; Lehrbuch der Theoretischen Physik, Verlag Harri Deutsch, 1991.

  6. P. J. Christman andL. Podzimek: Hot-wire anemometer behavior in low velocity air flow, J. Phys. E. Sci. Instr., vol. 14, pp. 46–51 (1970).

    Article  Google Scholar 

  7. A. P. Hatton, D. D. James, andH. W. Swire: Combined forced and natural convection with low-speed air flow over horizontal cylinders, J. Fluid Mech., vol. 42, pp. 17–31 (1970).

    Article  Google Scholar 

  8. F. R. Stengele andH. J. Rath: Influence of free convection on the heat transfer from hot-wire probes, Wärme- und Stoffübertr., vol. 29, pp. 299–307 (1994).

    Article  Google Scholar 

  9. L. J. S. Bradbury andI. P. Castro: Some comments on heat-transfer laws for fine wires, J. Fluid. Mech., vol. 51 (3), pp. 487–495 (1972).

    Article  Google Scholar 

  10. A. Abdel-Rahman, C. Tropea, P. Slawson, andA. Strong: On temperature compensation in hot-wire anemometry, J. Phys. E: Sci. Instr., vol. 20, pp. 315–319 (1987).

    Article  Google Scholar 

  11. VDI-Wärmeatlas, VDI, 7. edition, 1994.

  12. R. P. Dring andB. Gebhart: Hot-wire anemometer calibration for measurements at very low velocity, J. Heat Transfer, ASME, vol. 91, pp. 241–244 (1969).

    Google Scholar 

  13. L. P. Chua, H.-S. Li, andH. Zhang: Calibration of hot-wire for low speed measurements, Int. Comm. Heat Mass Transfer, vol. 27, pp. 507–516 (2000).

    Article  Google Scholar 

  14. G. E. Andrews, D. Bradley, andG. F. Hundy: Hot-wire anemometer calibration for measurements of small gas velocities, Int. J. Heat Mass Transfer, vol. 15, pp. 1765–1786 (1972).

    Article  Google Scholar 

  15. R. L Mahajan andB. Gebhart: Hot-wire anemometer calibration in pressurised nitrogen at low velocities, J. Phys. E: Sci. Instr., vol. 13, pp. 1110–1118 (1980).

    Article  Google Scholar 

  16. D. C. Collis andM. J. Williams: Free convection of heat from fine wires, Aeronautical Research Laboratories, Melburne, vol. 140, pp. 1–23 (1954).

    Google Scholar 

  17. L. V. King: On the convection of heat from small cylinders in a stream of fluid, Phil. Trans. Roy. Soc. London, vol. 214 (A), pp. 373–432 (1914).

    Google Scholar 

  18. J. Cole andA. Roshko: Heat transfer from wires at Reynolds number in the Oseen range, Proc. Heat Transfer and Fluid Mech. Inst., pp. 13–23, University of California, Berkeley (1954).

    Google Scholar 

  19. C. A. Hieber andB. Gebhart: Low Reynolds number heat transfer from a circular cylinder, J. Fluid Mech., vol. 32 (1), pp. 21–28 (1968).

    Article  MATH  Google Scholar 

  20. TSI GmbH, Ziegler Str. 1, 52078 Aachen, Germany: Innovation in Thermal Anemometry, 1998.

  21. H. Schlichting and K. Gersten: Grenzschicht-Theorie, Springer, 9. edition, 1997.

  22. F. A. Koch andI. S. Gartshore: Temperature effect on hot-wire anemometer calibrations, J. Phys. E: Sci. Instr., vol. 5, pp. 58–61 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henselowsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henselowsky, C., Kuhlmann, H.C. & Rath, H.J. Investigation of the influence of free convection on the heat transfer of cylinders with different aspect ratios. Microgravity sci. Technol. 13, 43 (2002). https://doi.org/10.1007/BF02872076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02872076

Keywords

Navigation