Skip to main content
Log in

CECILIA, a versatile research tool for cellular responses to gravity

  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

We describe a centrifuge designed and constructed according to current demands for a versatile instrument in cellular gravitational research, in particular protists (ciliates, flagellates). The instrument (called CECILIA,centrifuge forciliates) is suited for videomonitoring, videorecording, and quantitative evaluation of data from large numbers of swimming cells in a ground-based laboratory or in a drop tower/drop shaft under microgravity conditions. The horizontal rotating platform holds up to six 8mm-camcorders and six chambers holding the experimental cells. Under hypergravity conditions (up to 15 g) chambers can be rotated about 2 axes to adjust the swimming space at right angles or parallel to the resulting gravity vector. Evaluations of cellular responses to central acceleration — in the presence of gravitational 1 g — are used for extrapolation of cellular behaviour under hypogravity conditions. CECILIA is operated and monitored by computer using a custom-made soft-ware. Times and slopes of rising and decreasing acceleration, values and quality of steady acceleration are supervised online. CECILIA can serve as an on-ground research instrument for precursor investigations of the behaviour of ciliates and flagellates under microgravity conditions such as long-term experiments in the International Space Station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koehler, O.: Über die Geotaxis vonParamecium. Arch. Protistenk. vol. 45, p. 1–94 (1922).

    Google Scholar 

  2. Machemer-Röhnisch, S., Nagel, U., Machemer, H.: A gravity-induced regulation of swimming speed inEuglena gracilis. J. Comp. Physiol. A vol. 185, p. 517–527 (1999).

    Article  Google Scholar 

  3. Nagel, U., Machemer, H.: Physical and physiological components in the graviresponses ofParamecium tetraurelia wild type and mutant. J. Exp. Biol., vol. 203, p. 1059–1070 (2000).

    Google Scholar 

  4. Neugebauer, D. C., Machemer-Röhnisch, S., Nagel, U., Bräucker, R., Machemer, H.: Evidence of central and peripheral gravireception in the ciliateLoxodes. J. Comp. Physiol. A vol. 183, p. 303–311 (1998).

    Article  Google Scholar 

  5. Watzke, D.: Experimentelle Beeinflussung der gravisensorischen Transduktion beiParamecium caudatum. Dissertation an der Fakultät für Biologie, Ruhr-Universität Bochum, 2000 (in German).

  6. Kreuzberg, K., Behrle, R., Joop, O., Treichel, R.: The slow-rotating centrifuge microscope (NIZEMI): a new research tool for terrestrial and space-related gravitational biology. Proc. IV. Eur. Symp. Life Sciences Research in Space (V. David, ed.), Trieste 1990, ESA Publications, ESTEC, Noordwijk, p. 471–474 (1990).

    Google Scholar 

  7. Machemer, H.: Unicellular responses to gravity transitions. Space Forum vol. 3: p. 3–44 (1998).

    Google Scholar 

  8. Bräucker, R.: Hypergravity research in ciliates: achievements and shortcomings of the latest NIZEMI version. Proc. C.E.B.A.S. Workshops vol. 1995, p. 49–55 (1995).

    MathSciNet  Google Scholar 

  9. Dittus, H.: Drop Tower "Bremen" User Manual, Version 2.2, ZARM, Bremen (1992).

    Google Scholar 

  10. Thurm, U.: Mechanosensorik, in: Neurowissenschaft, Dudel, J., Menzel, R., Schmidt, R. F., (Eds), Springer Verlag, Berlin, Heidelberg, New York, p. 331–358 (1996).

    Google Scholar 

  11. Machemer, H.: The swimming cell and its world: structures and mechanisms of orientation in protists. Europ. J. Protistol. vol. 37, p. 3–14 (2001).

    Article  Google Scholar 

  12. Hudspeth, A. J.: How the ear’s works work. Nature vol. 341, p. 397–404 (1989).

    Article  Google Scholar 

  13. Thurm, U., Erler, G., Gödde, J., Kastrup, H., Keil, T., Völker, W. Vohwinkel, B.: Cilia specialized for mechanoreception. J. Submicrosc. Cytol. vol. 15, p. 151–155 (1983).

    Google Scholar 

  14. Bräucker, R., Murakami, A., Ikegaya, K., Yoshimura, K., Takahashi, K., Machemer-Röhnisch, S., Machemer, H.: Relaxation and activation of graviresponses inParamecium. J. Exp. Biol. vol. 201, p. 2103–2113 (1998).

    Google Scholar 

  15. Häder, D.-P., Rosum, A., Schäfer, J., Hemmersbach, R.: Graviperception in the flagellateEuglena gracilis during a shuttle space flight. J. Biotechnol. vol. 47, p. 261–269 (1996).

    Article  Google Scholar 

  16. Häder, D.-P., Rosum, A., Schäfer, J., Hemmersbach, R.: Gravitaxis in the flagellateEuglena gracilis is controlled by an active gravireceptor. J. Plant Physiol. vol. 146, p. 474–480 (1995).

    Google Scholar 

  17. Briegleb, W:. Ein Modell zur Schwerelosigkeits-Simulation an Mikroorganismen. Naturwiss. 54, 167 (1967).

    Article  Google Scholar 

  18. Hemmersbach-Krause, R., Briegleb, W.: Gravity effects onParamecium cells: An analysis of a possible sensory function of trichocysts and of simulated weightlessness on trichocyst exocytosis. Europ. J. Protistol. 27, 85–92 (1991).

    Google Scholar 

  19. Mesland, D. A., Anton, A. H., Willemsen, H., van den Ende, H.: The Free Fall Machine — a ground-based facility for microgravity research in life sciences. Microgravity Sci. Technol. vol. 9, p. 10–14 (1996).

    Google Scholar 

  20. Hoson T, Kamisaka S, Miyamoto K, Ueda J, Yamashita M, Masuda Y: Vegetative growth of higher plants on a three-dimensional clinostat. Microgravity Sci. Technol. vol. 6, p. 278–280 (1993).

    Google Scholar 

  21. Machemer, H., Bräucker, R.: Gravireception and graviresponses in ciliates. Acta Protozool. vol. 31, p. 185–214 (1992).

    Google Scholar 

  22. Kowalewski, U., Bräucker, R., Machemer, H.: Responses ofTetrahymena pyriformis to the natural gravity vector. Microgravity Sci. Technol. vol. 11, p. 167–172 (1999).

    Google Scholar 

  23. Bräucker, R., Machemer-Röhnisch, S., Machemer, H.: Graviresponses inParamecium andDidinium examined under varied hypergravity conditions. J. Exp. Biol. vol. 197, p. 271–294 (1994).

    Google Scholar 

  24. Krause, M.: Elektrophysiologie, Mechanosensitivität und Schwerkraftbeantwortung vonBursaria truncatella. Diplomarbeit, Fakultät für Biologie, Ruhr-Universität Bochum, p. 134 (1999).

  25. Häder, D.-P., Lebert, M.: Real time computer-controlled tracking of motile microorganisms. Photochem. Photobiol. vol. 42, p. 509–514 (1985).

    Article  Google Scholar 

  26. Machemer, H., Bräucker, R., Murakami, A., Yoshimura, K.: Graviperception in unicellular organisms: a comparative behavioural study under short-term microgravity. Microgravity Sci. Technol. vol. 5, p. 221–231 (1993).

    Google Scholar 

  27. Watzke, D., Bräucker, R., Machemer, H.: Graviresponses of iron-fedParamecium under hypergravity. Eur. J. Protistol. vol. 34, p. 82–92 (1998).

    Google Scholar 

  28. Machemer, H., Nagel, U., Bräucker, R.: Assessment of g-dependent cellular gravitaxis: determination of cell orientation from locomotion track. J. Theor. Biol. vol. 185, p. 201–211 (1997).

    Article  Google Scholar 

  29. Wu, Y. T.: Hydrodynamics of swimming at low Reynolds numbers, Fortschr. Zool. vol. 24, p. 149–169 (1977).

    Google Scholar 

  30. Bräucker, R., Machemer-Röhnisch, S., Machemer, H.: Gravity-controlled gliding velocity inLoxodes. Europ. J. Protistol. vol. 28, p. 238–245 (1992).

    Google Scholar 

  31. Nagel, U., Watzke, D., Neugebauer, D. C., Machemer-Röhnisch, S., Bräucker, R., Machemer, H.: Analysis of sedimentation of immobilized cells under normal and hypergravity. Microgravity Sci. Technol. vol. 10, p. 41–52 (1997).

    Google Scholar 

  32. Machemer, H., Bräucker, R.: Gravitaxis screened for physical mechanism using g-modulated orientational cellular behaviour. Microgravity Sci. Technol. vol. 9, p. 2–9 (1996).

    Google Scholar 

  33. Stallwitz, E., Häder, D.-P.: Effects of heavy metals on motility and gravitactic orientation of the flagellate,Euglena gracilis, Europ. J. Protistol. vol. 30, p. 18–24 (1994).

    Google Scholar 

  34. Gebauer, M., Watzke, D., Machemer, H.: The gravikinetic response ofParamecium is based on orientation-dependent mechanotransduction. Naturwissenschaften vol. 86, p. 352–356 (1999).

    Article  Google Scholar 

  35. Häder, D.-P., Hemmersbach, R.: Graviperception and graviorientation in flagellates. Planta vol. 203, p. S7-S10 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräucker, R., Machemer, H. CECILIA, a versatile research tool for cellular responses to gravity. Microgravity sci. Technol. 13, 3 (2002). https://doi.org/10.1007/BF02872071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02872071

Keywords

Navigation