Skip to main content
Log in

The thermocapillary migration of gas bubbles in a viscoelastic fluid

  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The steady thermocapillary flow of a spherical bubble in a linear temperature field is analyzed by considering that the continuous phase is a weak viscoelastic fluid. Convective heat and momentum transfers are neglected but the action of gravity is taken into account. The problem is formulated for non shear thinning elastic fluids which may be described by the Olroyd-B constitutive equation. The analysis is restricted to weak elastic fluids, an assumption that in dimensionless terms is equivalent to assuming that the Weissenberg number Wi=λ/tc where λ is the relaxation time of the fluid and tc the scale time of the flow, is small compared to unity. Thus, the corresponding boundary value problem is solved following a perturbation procedure by regular expansions of the kinematic and stress variables in powers of Wi (retarded motion expansion). Velocity fields as well as the force exerted by the fluid upon the bubble are determined at second order in Wi. It is shown that when the motion is driven by buoyancy in the presence of surface tension forces of a comparable order of magnitude, the velocity fields are strongly affected. Unlike the newtonian case where the recirculation region generated is symmetrical, in a non-newtonian fluid elastic effects produce a breaking of symmetry, so that this region is enhanced and shifted in the downstream direction. The analysis also provides the second order correction to both the terminal velocity and the temperature gradient needed to hold the bubble at rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, N. O., Goldstein, J. S., Block, M. J.: The Motion of Bubbles in a Vertical Temperature Gradient. J. Fluid Mech. vol. 6, p. 350 (1959).

    Article  MATH  Google Scholar 

  2. Wozniak, G., Siekmann, J., Srulijes, J.: Thermocapillary Bubble and Drop Dynamics Under Reduced Gravity: Survey and Prospects. Z. Flugwiss. Weltraumforsch., vol. 12, p. 137 (1988).

    Google Scholar 

  3. Subramanian, R. S.: The motion of bubbles and drops in reduced gravity, in: Chhabra R. P., Dekee, D. (Eds.): Transport Processes in Bubbles, Drops and Particles, Hemisphere, New York p. 1 (1992).

    Google Scholar 

  4. Crespo A., Jiménez-Fernández J.: Thermocapillary migration of bubbles at moderately large Reynolds numbers. Microgravity Science and Thecnology, vol. 4, p. 79 (1991). (The whole paper is published by Springer Verlag as pro ceeding of the IUTAM Symposium, Bremen, September 1991).

    Google Scholar 

  5. Crespo A., Jiménez-Fernández J.: Thermocapillary Migration of Bubbles: a Semi-Analytic Solution for Large Marangoni Numbers. Proceedings of the 8th European Symposium on Material Sciences in Microgravity (H. J. Rath, editor, p. 405, Springer-Verlag, New York 1992).

    Google Scholar 

  6. Balasubramaniam R., Subramanian, R. S.: Thermocapillary bubble migration — thermal boundary layers for large Marangoni numbers. Int. J. Multiphase Flow, vol. 22, p. 593 (1996).

    Article  MATH  Google Scholar 

  7. Treuner, M., Galindo, V., Gerbeth, G., Langbein, D., Rath, H. J.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers under low gravity, J. Colloid and Interface Sci., vol. 179, p. 114 (1996).

    Article  Google Scholar 

  8. Crespo, A., Migoya, E., Manuel, F.: Thermocapillary Migration of Bubbles at Large Reynolds Number, Int. J. Multiphase Flow, vol. 24, p. 685 (1998).

    Article  MATH  Google Scholar 

  9. Balasubramaniam, R.: Thermocapillary bubble migration-solution of the energy equation for potential-flow approximated velocity fields. Computational Fluid Dynamics, vol. 3, p. 407 (1995).

    Google Scholar 

  10. Balasubramaniam, R., Lacy, C. E., Wozniak, G., Subramanian, R. S.: Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity, Phys. Fluids, vol. 8 (4), p. 872 (1996).

    Article  Google Scholar 

  11. Hadland, P. H., Balasubramaniam, R., Wozniak, G., Subramanian, R. S.: Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity, Experiments in Fluids, vol. 26, p. 240 (1999).

    Article  Google Scholar 

  12. Hardy, S. C.: The Motion of Bubbles in a Vertical Temperature Gradient, J. Colloid and Interface Sci., vol. 69, p. 157 (1979).

    Article  Google Scholar 

  13. Merritt, R. M., Subramanian, R. S.: The Migration of Isolated Gas Bubbles in a Vertical Temperature Gradient, J. Colloid and Interface Sci., vol. 125, p. 333 (1988).

    Article  Google Scholar 

  14. Boger, D. V.: A Highly Elastic Constant-Viscosity Fluid., J. Non-Newtonian Fluid Mech., vol. 3, p. 87 (1977/78).

    Article  Google Scholar 

  15. Boger, D. V.: Separation of Shear Thinning and Elastic Effects in Experimental Rheology, in: Rheology, Vol. 1, Principles, Astarita G., Marrucci, G., and Nicolais, L. (Eds.): Plenum Press, New York (1980).

    Google Scholar 

  16. Mackay M. E., Boger, D. V.: An explanation of the rheological properties of Boger fluids, J. Non-Newt. Fluid Mech., vol. 22, p. 235 (1987).

    Article  Google Scholar 

  17. Olroyd, J. G.: On the formulation of rheological equations of state. Proc., Roy. Soc. (London), vol. A 200, p. 523 (1950).

    Google Scholar 

  18. Bird, R. B., Armstrong, R. C., Hassager O.: Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York (1987).

    Google Scholar 

  19. Quintana, G. C., Cheh, H. Y., Maldarelli, C. M.: The Translation of a Newtonian Droplet in a 4-Constant Olroyd Fluid, J. Non-Newt. Fl. Mech., vol. 22, p. 253 (1987).

    Article  MATH  Google Scholar 

  20. Tiefenbruck, G., Leal, G.: A Numerical Study of the Motion of a Viscoelastic Fluid past Rigid Spheres and Spherical Bubbles, J. Non-Newt. Fl. Mech., vol 10, p. 115 (1982).

    Article  MATH  Google Scholar 

  21. Merritt, R. M., Morton, D. S., Subramanian, R. S.: Flow Structures in Bubble Migration under the Combined Action of Buoyancy and Thermocapillarity, J. Colloid and Interface Sci., vol. 155, p. 200 (1993).

    Article  Google Scholar 

  22. Muller, S. J., Larson, R. G., Shaqfeh, S. G.: A purely elastic transition in Taylor-Couette flow, Rheol. Acta, vol. 28, p. 499 (1989).

    Article  Google Scholar 

  23. Baumert, B., Muller, S.: Flow visualization of the elastic Taylor-Couette instability in Boger fluids, Rheol. Acta, vol. 34, p. 147 (1995).

    Article  Google Scholar 

  24. Rodrigue, D., De Kee, D., Chan Man Fong C. F.: Bubble Velocities: Further Developments on the Jump Discontinuity, vol. 79, p. 45 (1998).

    MATH  Google Scholar 

  25. Rodrigue, D., De Kee, D.: Bubble Velocity Jump Discontinuity in Polyacrylamide Solutions: a Photographic Stud., Rheol. Acta, vol. 38, p. 177 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Fernández, J., Crespo, A. The thermocapillary migration of gas bubbles in a viscoelastic fluid. Microgravity sci. Technol. 13, 33 (2002). https://doi.org/10.1007/BF02872069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02872069

Keywords

Navigation