Skip to main content
Log in

Fifty years of subnuclear physics: from past to future and the ELN project

  • Published:
La Rivista del Nuovo Cimento (1978-1999) Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References and Notes

  1. Lamb W. E. andRetherford R. C.,Fine Structure of the Hydrogen Atom by a Microwave Method,Phys. Rev.,72 (1947) 241.

    Google Scholar 

  2. Lattes C. M. G., Muirhead H., Occhialini G. P. S. andPowell C. F.,Processes Involving Charged Mesons,Nature,159 (1947) 694;Lattes C. M. G., Occhialini G. P. S. andPowell C. F.,Observations on the Tracks of Slow Mesons in Photographic Emulsions, Nature,160 (1947) 454.

    Google Scholar 

  3. Rochester G. D. andButler C. C.,Evidence for the Existence of New Unstable Elementary Particles,Nature,160 (1947) 855.

    Google Scholar 

  4. The first “radiative” effects (experimentally) discovered are the Lamb-shift and the “anomalous” magnetic moment of the electron. They are examples of two distinct phenomena. One (the Lamb-shift) can be almost fully (95%) accounted for by a non-relativistic calculation (as done byH. A. Bethe who found 1040 MHz:The Electromagnetic Shift of Energy Levels, Phys. Rev.,72 (1947) 339), while the other (the “anomalous” magnetic moment) cannot. The fact that the gyromagnetic ratio of the electron is predicted by the Dirac equation to beg = 2 cannot be accounted for by any non-relativistic description. The magnetic behaviour of an electron in a magnetic field corresponds to the effect caused by the emission and reabsorption of virtual photons on its magnetic moment. The “anomalous” magnetic moment of the electron,i.e. itsg value being different from 2, needs a relativistic description of the virtual electromagnetic processes. This was done by J. Schwinger a few months after the experimental discovery of the Lamb-shift:Phys. Rev.,73 (1948) 416. In this paper the “anomalous” magnetic moment of the electron was theoretically found to be the by now famous (α/2π). Furthermore, while the Lamb-shift affects only the hydrogen atom, the deviation from QED of an intrinsic property such as the “magnetic” moment of an elementary particle (the electron) is expected to affect other particles as well. In fact—when the muon came in—the “anomalous” magnetic moment of this unexpected particle was considered the crucial check in order to verify its intrinsic properties (see subsect. 2.2.2).

    Google Scholar 

  5. Maiani L. andZichichi A.,Dal Gran Sasso al Supermondo, INFN/AE-98/19, July 1998.

  6. Soergel V., Waloschek P. andWiik B.,The HERA Collider, DESY, January 1994.

  7. Morpurgo M.,The Thin Superconducting Solenoid for ZEUS, INFN/CERN report 1985;Lin Q. andMorpurgo M.,The Thin Superconducting Solenoid for ZEUS, INFN/CERN report 1988;Bruni P., Ceresara S., Li Y., Lin Q., Musso B. andZichichi A.,Design Study of α ϕ 19.5 × 36 MSuperconducting Solenoid, inProceedings of the Applied Superconductivity Conference-ASC 1990, Snowmass, CO, USA 24–26 September 1990,IEEE Trans. Magn.,27, n. 2 (1991) 1969.

  8. Dalpiaz P.,Alpi project, LNF-INFN-001/87;Fortuna G., Pengo R., Bassato G., Ben-Zvi I., Larson J. D., Sokolowski J. S., Badan L., Battistella A., Bisoffi G., Buso G., Cavenago M., Cervellera F., Dainelli A., Facco A., Favaron P., Lombardi A., Marigo S., Moisio M. F., Palmieri V., Porcellato A. M., Rudolph K., Preciso R. and Tiveron B.,The ALPI Project at the Laboratori Nazionali di Legnaro, Nucl. Instrum. Methods A,287 (1990) 253;Dainelli A., Bassato G., Battistella A., Bellato M., Beltramin A., Bertazzo L., Bezzon G., Bisoffi G., Boscagli L., Canella S., Carlucci D., Cervellera F., Chiurlotto F., Contran T., De Lazzari M., Facco A., Favaron P., Fortuna G., Gustafsson S., Lollo M., Lombardi A., Marigo S., Moisio M. F., Palmieri V., Pengo R., Pisent A., Poggi M., Poletto F., Porcellato A. M. andZiomi L.,Commissioning of the ALPI post-accelerator,Nucl. Instrum. Methods A,382 (1996) 100;Fortuna G., Bisoffi G., Facco A., Lombardi A., Palmieri V., Pisent A. andPorcellato A. M.,Status of ALPI and Related Developments of Superconducting Structures, Proceedings Linac 96 Conference, edited by C. Hill and M. Vretenar, CERN 96-07, 905 (1996).

  9. Calabretta L., Cuttone G., Gammino S., Gmaj P., Migneco E., Raia G., Rifuggiato D., Rovelli A., Sura J., Amato A., AttinÀ G., Cafici M., Caruso A., De Luca G., Pace S., Passarello S., Pulvirenti S., Sarta G., Sedita M., Sparta A., Speziale F., Acerbi E., Alessandria F., Bellomo G., Birattari C., Bosotti A., De Martinis C., Fabrici E., Giove D., Michelato P., Pagani C., Rossi L., Baccaglioni G., Giussani W. andVarisco G.,Commissioning of the K800 INFN Cyclotron, inProceedings of the XIV Conference on Cyclotrons and their Applications, Capetown, 1995, edited byJ. C. Cornell (World Scientific) 1996, p. 12;Calabretta L., Ciavola G., Cuttone G., Gammino S., Gmaj P., Migneco E., Raia G., Rifuggiato D., Rovelli A., Sura J., Scuderi V., Acerbi E., Alessandria F., Bellomo G., Bosotti A., De Martinis C., Giove D., Michelato P., Pagani C. andRossi L.,First Operations of the LNS Heavy Ions Facility, Nucl. Instrum. Methods A,382 (1996) 140.

  10. Acerbi E. et al.,The INFN-LASA Lab., Proceedings of the 9th International Conference on Cyclotrons and their Applications, Caen (France) (Editions de Physique, Les Ulis) 1981, p. 169.

  11. The progress of Subnuclear Physics as reported in the Erice School books whose titles follow: 1)Strong, Electromagnetic and Weak Interactions (1963); 2)Symmetries in Elementary Particle Physics (1964); 3)Recent Developments in Particle Symmetries (1965); 4)Strong and Weak Interactions-Present Problems (1966); 5)Hadrons and their Interactions (1967); 6)Theory and Phenomenology in Particle Physics (1968); 7)Subnuclear Phenomena (1969); 8)Elementary Processes at High Energy (1970); 9)Properties of the Fundamental Interactions (1971); 10)Highlights in Particle Physics (1972); 11)Laws of Hadronic Matter (1973); 12)Lepton and Hadron Structure (1974); 13)New Phenomena in Subnuclear Physics (1975); 14)Understanding the Fundamental Constituents of Matter (1976); 15)The Whys of Subnuclear Physics (1977); 16)The New Aspects of Subnuclear Physics (1978); 17)Pointlike Structures Inside and Outside Hadrons (1979); 18)The High-Energy Limits (1980); 19)The Unity of Fundamental Interactions (1981); 20)Gauge Interactions: Theory and Experiments (1982); 21)How far are we from the Gauge Forces (1983); 22)Quarks,Leptons and their Constituents (1984); 23)Old and New Forces of Nature (1985); 24)The Super World I (1986); 25)The Super World II (1987); 26)The Super World III (1988); 27)The Challenging Questions (1989); 28)Physics up to 200 TeV (1990); 29)Physics at the Highest Energy and Luminosity: To Understand the Origin of Mass (1991); 30)From Superstrings to the Real Superworld (1992); 31)From Supersymmetry to the Origin of Space-Time (1993); 32)From Superstring to Present-day Physics (1994); 33)Vacuum and Vacua: the Physics of Nothing (1995); 34)Effective Theories and Fundamental Interactions (1996); 35)Highlights: 50 Years Later (1997). Vol. 1 was published by W. A. Benjamin, Inc., New York; 2–8 and 11–12 by Academic Press, New York and London; 9–10 by Editrice Compositori, Bologna; 13–29 by Plenum Press, New York and London; 30–36 by World Scientific.

  12. Hawking S. W.,Particle Creation by Black Holes,Commun. Math. Phys.,43 (1975) 199.

    MathSciNet  Google Scholar 

  13. Bernardini M., Bollini D., Fiorentino E., Mainardi F., Massam T., Monari L., Palmonari F. andZichichi A.,A Proposal to Search for Leptonic Quarks and Heavy Leptons Produced by ADONE, INFN/AE-67/3, 20 March 1967;Alles-Borelli V., Bernardini M., Bollini D., Brunini P. L., Massam T., Monari L., Palmonari F. and Zichichi A.,Limits on the Electromagnetic Production of Heavy Leptons, Lett. Nuovo Cimento, 4 (1970) 1156; Bernardini M., Bollini D., Brunini P. L., Fiorentino E., Massam T., Monari L., Palmonari F., Rimondi F. and Zichichi A.,Limits on the Mass of Heavy Leptons, Nuovo Cimento A,17 (1973) 383; and ref. [89].

  14. ’t Hooft G.,Quantization of Point Particles in (2+1)-Dimensional Gravity and Spacetime Discreteness,Class. Quantum Grav.,13 (1996) 1023; ’t Hooft G.,The Scattering Matrix Approach for the Quantum Black Hole: an Overview, Int. J. Mod. Phys. A,11 (1996) 4623.

    MathSciNet  Google Scholar 

  15. For a review seeVeneziano G.,An Amusing Cosmology from the String Effective Action, inEffective Theories and Fundamental Interactions, Erice 1996 (World Scientific) 1997, p. 300.

  16. Veneziano G.,Scale Factor Duality for Classical and Quantum Strings,Phys. Lett. B,265 (1991) 287;Gasperini M. andVeneziano G.,Pre-Big-Bang in String Cosmology, Astropart. Phys.,1 (1993) 317. For a complete collection of papers on the PBB scenario seehttp://www.to.infn.it/∼ gasperin/.

    MathSciNet  Google Scholar 

  17. Kaluza andKlein were the first [19, 20] to think and propose that the electromagnetic forces could be described in terms of an extra dimension of space to be added to the standard Lorentz space-time as the one illustrated in fig. 4. Thus, instead of (3 +1) dimensions, the Lorentz space should have (4 + 1) dimensions. The extra space dimension, the 5th one, would be compactified around a circle, thus producing the U(1) symmetry which generates the electromagnetic forces. The latest news is that our world has its origin in 11 bosonic dimensions (10 space + 1 time) and 32 fermionic dimensions. We shall try to summarize here how we go from these 43 dimensions of the superspace to our world with (3 + 1) bosonic dimensions and the gauge forces SU(3) ×SU(2) × U(1) plus 3 families. Note that the time dimension is always one. The space dimensions are 10. In (10 +1) dimensions supergravity has no gauge group,i.e. no vector fields. If one dimension is compactified, this becomes a coupling. In fact superstring theory in (9 + 1) dimensions plus a coupling is equivalent to supergravity in (10 + 1) dimensions, as shown by P. Horova and E. Witten [21]. The new development is that the compactification must be done on a segment (not on a circle àla Kaluza-Klein). The end points of the segment each have 10 dimensions. Imposing anomaly cancellation, gauge groups appear and these are E8 × E8. It is the compactification into a segment and the condition of anomaly cancellation which produces the gauge groups E8 × E8. The compactification into a segment reduces the number of fermionic dimensions from 32 to 16. If the compactification were on a circle (àla Kaluza-Klein), the number of fermionic dimensions would remain 32. Another important detail: the length of the segment gives the coupling. A long segment corresponds to a strong coupling; a short segment corresponds to a weak coupling for the string theory. The last step is the compactification of the 6 remaining bosonic dimensions in a Calabi-Yau manifold [22, 23]. This manifold has the property of reducing the 16 fermionic dimensions into 4 fermionic dimensions (i.e. N = 1 supersymmetry) and giving rise to the gauge groups E6 × E8. The E6 group containsSU(3) ×SU(2) × U(1) and this is the standard model. The group E8 remains hidden and all particles of our world are singlets. The particles of E8 communicate with the particles of the standard model via gravitational interactions. The hope is that this hidden E8 sector, gravitationally coupled to the standard model, is going to be the source of supersymmetry breaking [24]. An important detail is that the 6-dimensional Calabi-Yau manifold has the property that right and left-handed states are not equal in number. Therefore, parity violation is in the structure of space. Another important point is that the number of families can be derived [25] from the topological properties of the Calabi-Yau manifold [26]. In other words, why are there three families has as answer, another question: why that particular topological property in the Calabi-Yau manifold? Thus, the origin of the fictitious spaces with one, two and three complex dimensions is in the 43 dimensions of the superspace.

  18. Kaluza T.,Zum Unitätsproblem der Physik,Sitz. Phreuss Akad. Wiss.,K11 (1921) 466.

    Google Scholar 

  19. Klein O.,Quantentheorie und fünfdimensionale Relativitätstheorie,Z. Phys.,37 (1926) 895.

    Google Scholar 

  20. Horova P. andWitten E.,Heterotic and Type I String Dynamics from Eleven Dimensions,Nucl. Phys. B,460 (1996) 506.

    Google Scholar 

  21. Calabi E., inAlgebraic Geometry and Topology: A symposium in honour of S. Lefschetz (Princeton University Press) 1957, p. 78.

  22. Yau S.-T.,Calabi’s Conjecture and Some New Results in Algebraic Geometry,Proc. Natl. Acad. Sci. (USA),74 (1977) 1798.

    Google Scholar 

  23. Ferrara S.,Considerations on the Moduli Space of Calabi-Yau Manifolds, inThe Challenging Questions, Erice 1989, edited byA. Zichichi (Plenum Press, New York and London) 1990, p. 103.

    Google Scholar 

  24. Ferrara S.,Effective Lagrangians for Superstring Compactification, inThe Superworld III, Erice 1988, edited byA. Zichichi (Plenum Press, New York and London) 1990, p. 77.

    Google Scholar 

  25. Ferrara S.,Heterotic and Type II Superstrings Compactified on Calabi-Yau Manifolds, inPhysics up to 200 TeV,Erice 1990, edited byA. Zichichi (Plenum Press, New York and London) 1991, p. 155.

    Google Scholar 

  26. Brustein R., Gasperini M., Giovannini M. andVeneziano G.,Relic Gravitational Waves from String Cosmology,Phys. Lett. B,361 (1995) 45.

    MathSciNet  Google Scholar 

  27. Gasperini M., Giovannini M. andVeneziano G.,Primordial Magnetic Fields from String Cosmology,Phys. Rev. Lett,75 (1995) 3796.

    Google Scholar 

  28. Dirac P. A. M.,Quantised Singularities in the Electromagnetic Field,Proc. R. Soc. London, Ser. A,133 (1931) 60.

    Google Scholar 

  29. Dirac P. A. M.,The Principles of Quantum Mechanics, 4th edition (Clarendon Press, Oxford) 1958.

    Google Scholar 

  30. Weyl H.,The Theory of Groups and Quantum Mechanics (Dover Publications, New York) 1928.

    Google Scholar 

  31. Anderson C. D.,The Positive Electron,Phys. Rev.,43 (1933) 491;Blackett P. M. S. andOcchialini G. P. S.,Some Photographs of the Tracks of Penetrating Radiation, Proc. R. Soc. London, Ser. A,139 (1933) 699.

    Google Scholar 

  32. Dirac P. A. M.,Theory of Electrons and Positrons, Nobel Lecture, December 12 (1933).

  33. Lee T. D. andYang C. N.,Question of Parity Conservation in Weak Interactions,Phys. Rev.,104 (1956) 254.

    Google Scholar 

  34. Wu C. S., Ambler E., Hayward R. W. andHoppes D. D.,Experimental Test of Parity Conservation in Beta Decay,Phys. Rev.,105 (1957) 1413;Garwin R., Lederman L. andWeinrich M.,Observation of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon, Phys. Rev.,105 (1957) 1415; Friedman J. J. and Telegdi V. L.,Nuclear Emulsion Evidence for Parity Non-Conservation in the Decay Chain π+ μ+ e+,Phys. Rev.,105 (1957) 1681.

    Google Scholar 

  35. Landau L. D.,On the Conservation Laws for Weak Interactions,Zh. Eksp. Tear. Fiz.,32 (1957) 405.

    Google Scholar 

  36. Lee T. D., Oehme R. andYang C. N.,Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation,Phys. Rev.,106 (1957) 340.

    MathSciNet  Google Scholar 

  37. Christenson J., Cronin J. W., Fitch V. L. andTurlay R.,Evidence for the 2π Decay of the K 02 Meson,Phys. Rev. Lett.,13 (1964) 138.

    Google Scholar 

  38. Chew G. F.,The Analytic S Matrix (W. A. Benjamin Inc., New York, Amsterdam) 1966.

    Google Scholar 

  39. To the best of my knowledge, theCPT Theorem was first proved byW. Pauli in his articleExclusion Principle, Lorentz Group and Reflection of Space-Time and Charge, inNiels Bohr and the Development of Physics ((Pergamon Press, London) 1955, p. 30), which in turn is an extension of the work of J. Schwinger (Phys. Rev.,82 (1951) 914;The Theory of Quantized Fields. II., Phys. Rev.,91 (1953) 713;The Theory of Quantized Fields. III., Phys. Rev.,91 (1953) 728;The Theory of Quantized Fields. VI, Phys. Rev.,94 (1954) 1362) and G. Lüders,On the Equivalence of Invariance under Time Reversal and under Particle-Antiparticle Conjugation for Relativistic Field Theories (Dansk. Mat. Fys. Medd.,28 (1954) 5), which referred to an unpublished remark by B. Zumino. The final contribution to theCPT Theorem was given by R. Jost, inEine Bemerkung zum CPT Theorem (Helv. Phys. Acta,30 (1957) 409), who showed that a weaker condition, called “weak local commutativity” was sufficient for the validity of theCPT Theorem.

    Google Scholar 

  40. Massam T., Muller Th., Righini B., Schneegans M. andZichichi A.,Experimental Observation of Antideuteron Production,Nuovo Cimento,39 (1965) 10.

    Google Scholar 

  41. Ting S. S. C.,The Discovery of Nuclear Antimatter and the Origin of the AMS Experiment, inProceedings of the Symposium to celebrate the 30th anniversary of the Discovery of Nuclear Antimatter, edited byL. Maiani andR. A. Ricci,Proc. SIF, vol.53 (Editrice Compositori, Bologna) 1995, p. 21.

    Google Scholar 

  42. After the experimental discovery of the effect [1], W. F. Weisskopf and his student J. Bruce French were the first to correctly calculate the energy difference between the two energy levels of the hydrogen atom (22 S 1/2 22 P 1/2). Julian Schwinger and Richard Feynman were also engaged in the same calculations but both of them had made the same mistake, thus getting the same (wrong) answer. Unfortunately (for Weisskopf), both Schwinger and Feynman were in contact with Weisskopf who could not believe that these two extremely bright members of the younger generation of physicists engaged in computing this unexpected new “effect” could both be wrong. Thus Weisskopf decided to postpone the publication of his (correct) result. Meanwhile Lamb and his student Norman Kroll published their (correct) result (Kroll N. M. andLamb W. E.,On the Self-Energy of a Bound Electron,Phys. Rev.,75 (1949) 388) while Weisskopf was waiting for the cross-check (French J. B. and Weisskopf V. F.,The Electromagnetic Shift of Energy Levels, Phys. Rev.,75 (1949) 1240).

    Google Scholar 

  43. The first report on “scaling” was presented by J. I. Friedman at the 14th International Conference onHigh Energy Physics at Vienna, 28 August-5 September 1968. The report was presented as paper n. 563 but not published in the Conference Proceedings. It was published as a SLAC preprint. The SLAC data on scaling were included in the Panofsky general report to the Conference where he says «… the apparent success of the parametrization of the cross-sections in the variablev/q2 in addition to the large cross-section itself is at least indicative that point-like interactions are becoming involved», Panofsky W. K. H.,Low q2 Electrodynamics, Elastic and Inelastic Electron (and Muon) Scattering, inProceedings of the 14th International Conference on High Energy Physics, Vienna 1968, edited by J. Prentki and J. Steinberger (CERN) 1968, p. 23. The following physicists participated in the inelastic electron scattering experiments: W. B. Atwood, E. Bloom, A. Bodek, M. Breidenbach, G. Buschhorn, R. Cottrell, D. Coward, H. DeStaebler, R. Ditzler, J. Drees, J. Elias, G. Hartmann, C. Jordan, M. Mestayer, G. Miller, L. Mo, H. Piel, J. Poucher, C. Prescott, M. Riordan, L. Rochester, D. Sherden, M. Sogard, S. Stein, D. Trines and R. Verdier. For additional acknowledgements see Friedman J. I, Kendall H. W. and Taylor R. E.,Deep Inelastic Scattering: Acknowledgements, Les Prix Nobel 1990 (Almqvist and Wiksell, Stockholm/Uppsala) 1991, alsoRev. Mod. Phys.,63 (1991) 629. For a detailed reconstruction of the events see Friedman J. I.,Deep Inelastic Scattering Evidence for the Reality of Quarks, inHistory of Original Ideas and Basic Discoveries in Particle Physics, edited by H. B. Newman and T. Ypsilantis (Plenum Press, New York and London) 1994, p. 725.

  44. Massam T. andZichichi A.,Quark Search at the ISR, CERN preprint, June 1968;Basile M., Cara Romeo G., Cifarelli L., Giusti P., Massam T., Palmonari F., Valenti G. andZichichi A.,Search for Fractionally Charged Particles Produced in Proton-Proton Collisions at the Highest ISR Energy, Nuovo Cimento A,40 (1977) 41;Basile M., Cara Romeo G., Cifarelli L., Contin A., D’Alì G., Giusti P., Massam T., Palmonari F., Sartorelli G., Valenti G. andZichichi A.,A Search for quarks in the CERN SPS Neutrino Beam, Nuovo Cimento A,45 (1978) 281.

  45. Zichichi A.,New Developments in Elementary Particle Physics, Rivista Nuovo Cimento,2, n. 14 (1979). The statement on page 2 of this paper, «Unificationof all forces needs first a Supersymmetry. This can be broken later, thus generating the sequence of the various forces of nature as we observe them», was based on a work by A. Petermann and A. Zichichi where the renormalization group running of the couplings using supersymmetry was studied with the result that the convergence of the three couplings improved. This work was not published, but perhaps known to a few. The statement quoted is the first instance in which it was pointed out that supersymmetry may play an important role in the convergence of the gauge couplings. In fact, the convergence of three straight lines (α1/−1 α2/−1 α3/−1) with a change in slope is guaranteed by Euclidean geometry, as long as the point where the slope changes is tuned appropriately. What is non-trivial about the convergence of the couplings is that with the initial conditions given by the LEP results, the change in slope needs to be atMSVSY ∼ 1 TeV as claimed by the authors of ref. [49].

  46. Anselmo F., Cifarelli L., Petermann A. andZichichi A.,The Effective Experimental Constraints on Msusy and Mgut,Nuovo Cimento A,104 (1991) 1817.

    Google Scholar 

  47. Anselmo F., Cifarelli L., Petermann A. andZichichi A.,The Simultaneous Evolution of Masses and Couplings: Consequences on Supersymmetry Spectra and Thresholds,Nuovo Cimento A,105 (1992) 1179.

    Google Scholar 

  48. Amaldi U., de Boer W. andFürstenau H.,Comparison of Grand Unified Theories with Electroweak and Strong Coupling Constants Measured at LEP,Phys. Lett. B,260 (1991) 447.

    Google Scholar 

  49. Yukawa H.,Interaction of Elementary Particles. Part I.,Proc. Physico-Math. Soc. Jpn.,17 (1935) 48;Yukawa H.,Models and Methods in the Meson Theory, Rev. Mod. Phys.,21 (1949) 474.

    Google Scholar 

  50. Anderson C. D. andNeddermeyer S. H.,Cloud Chamber Observations of Cosmic Rays at 4300Meters Elevation and Near Sea Level,Phys. Rev.,50 (1936) 263.

    Google Scholar 

  51. Conversi M., Pancini E. andPiccioni O.,On the Disintegration of Negative Mesons,Phys. Rev.,71 (1947) 209.

    Google Scholar 

  52. Danby G., Gaillard J.-M., Goulianos K., Lederman L. M., Mistry N., Schwartz M. andSteinberger J.,Observations of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos,Phys. Rev. Lett.,9 (1962) 36.

    Google Scholar 

  53. Klein O.,Mesons and Nucleons,Nature,161 (1948) 897.

    Google Scholar 

  54. Lee T. D., Rosenbluth M. andYang C. N.,Interaction of Mesons with Nucleons and Light Particles,Phys. Rev.,75 (1949) 905.

    Google Scholar 

  55. Tiomno J. andWheeler J. A.,Energy Spectrum of Electrons from Meson Decay,Rev. Mod. Phys.,21 (1949) 144.

    Google Scholar 

  56. Charpak G., Farley F., Garwin R. L., Muller T., Sens J. C., Telegdi V. L., York C. M. andZichichi A.,The Anomalous Magnetic Moment of the Muon, inProceedings of the International Conference on High-Energy Physics, Rochester, N.Y., USA, 25 August–1 September 1960 (University of Rochester) 1960, p. 778.

  57. Charpak G., Farley F. J., Garwin R. L., Muller T., Sens J. C., Telegdi V. L. andZichichi A.,Measurement of the Anomalous Magnetic Moment of the Muon,Phys. Rev. Lett.,6 (1961) 128.

    Google Scholar 

  58. Charpak G., Farley F. J., Garwin R. L., Muller T., Sens J. C. andZichichi A.,A New Measurement of the Anomalous Magnetic Moment of the Muon,Phys. Lett.,1 (1962) 16.

    Google Scholar 

  59. Charpak G., Farley F. J., Garwin R. L., Müller T., Sens J. C. andZichichi A.,(g∼-2) and Its Consequences, inProceedings of the International Conference on High-Energy Physics,Geneva, Switzerland,4–11 July 1962 (CERN, Geneva) 1962, p. 476.

    Google Scholar 

  60. Charpak G., Farley F. J., Garwin R. L., Muller Th., Sens J. C. andZichichi A.,The Anomalous Magnetic Moment of the Muon,Nuovo Cimento,37 (1965) 1241.

    Google Scholar 

  61. Farley F. J., Massam T., Muller T. andZichichi A.,A Measurement of the μ + Lifetime, inProceedings of the International Conference on High-Energy Physics,Geneva, Switzerland,4–11 July 1962 (CERN, Geneva) 1962, p. 415;Zichichi A.,CERN Work on Weak Interactions, in theFebruary 1964 Meeting of the Royal Society, Proc. R. Soc. London, Ser. A,285 (1965) 175.

    Google Scholar 

  62. Buhler A., Cabibbo N., Fidecaro M., Massam T., Muller Th., Schneegans M. andZichichi A.,A Measurement of the e+ Polarization in Muon Decay: the e+ Annihilation Method,Phys. Lett.,7 (1963) 368.

    Google Scholar 

  63. Kemmer N.,Charge-Dependence of Nuclear Forces,Proc. Cambridge Phil. Soc.,34 (1938) 354;Kemmer N.,Quantum Theory of Einstein-Bose Particles and Nuclear Interaction, Proc. R. Soc. London, Ser. A,166 (1938) 127.

    Google Scholar 

  64. Lewis H. W., Oppenheimer J. R. andWouthuysen S. A.,The Multiple Production of Mesons,Phys. Rev.,73 (1948) 127.

    Google Scholar 

  65. Carlson A. G., Hooper J. E. andKing D. T.,The Neutral Mesons,Philos. Mag.,41 (1950) 701.

    Google Scholar 

  66. Bjorklund R., Crandall W. E., Moyer B. J. andYork H. F.,High Energy Photons from Proton-Nucleon Collisions,Phys. Rev.,77 (1950) 213.

    Google Scholar 

  67. Panofsky W. K. H., Aamodt R. L. andYork H. F.,The Gamma-Ray Spectrum from the Absorption of π-Mesonsin Hydrogen,Phys. Rev.,78 (1950) 825;Panofsky W. K. H., Aamodt R. L. and Hadley J.,The Gamma-Ray Spectrum Resulting from Capture of Negative π-Mesons in Hydrogen and Deuterium, Phys. Rev.,81 (1951) 565.

    Google Scholar 

  68. Ekspong G.,Recension: The Origin of the Concept of Nuclear Forces by Brown L. M. and Rechenberg H., Institute of Physics Publishing, Bristol and Philadelphia, 1966,Nucl. Instrum Methods A,394 (1997) 273.

    Google Scholar 

  69. Schwinger J.,On Gauge Invariance and Vacuum Polarization,Phys. Rev.,82 (1951) 664.

    MathSciNet  Google Scholar 

  70. Gell-Mann M. andLévy M.,The Axial Vector Current in Beta Decay,Nuovo Cimento,16 (1960) 705.

    Google Scholar 

  71. Sutherland D. G.,Current Algebra and Some non-Strong Mesonic Decays,Nucl. Phys. B,2 (1967) 433.

    Google Scholar 

  72. Veltman M.,Theoretical Aspects of High Energy Neutrino Interactions,Proc. R. Soc. London, Ser. A,301 (1967) 107.

    Google Scholar 

  73. Bell J. S. andJackiw R.,A PCAC Puzzle:π0→γγin the σ-Model,Nuovo Cimento A,60 (1969) 47.

    Google Scholar 

  74. Adler S. L.,Axial-Vector Vertex in Spinor Electrodynamics,Phys. Rev.,177 (1969) 2426.

    Google Scholar 

  75. Adler S. L. andBardeen W. A.,Absence of Higher-Order Corrections in the Anomalous Axial-Vector Divergence Equation,Phys. Rev.,182 (1969) 1517.

    Google Scholar 

  76. Bardeen W. A.,Anomalous Ward Identities in Spinor Field Theories,Phys. Rev.,184 (1969) 1848.

    Google Scholar 

  77. ’t Hooft G.,Magnetic Monopoles in Unified Gauge Theories,Nucl. Phys. B,79 (1974) 276.

    MathSciNet  Google Scholar 

  78. Polyakov A. M.,Particle Spectrum in Quantum Field Theory,Zh. Ėksp. Teor. Fiz. Pisma Red.,20 (1974) 430.

    Google Scholar 

  79. Belavin A. A., Polyakov A. M., Schwartz A. S. andTyupkin Yu. S.,Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B,59 (1975) 85.

    MathSciNet  Google Scholar 

  80. ’t Hooft G.,Computation of the Quantum Effects due to a four-Dimensional Pseudoparticle, Phys. Rev. D,14 (1976) 3432;Phys. Rev. D,18 (1978) 2199 (Erratum).

    Google Scholar 

  81. ’t Hooft G.,Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett.,37 (1976) 8.

    Google Scholar 

  82. ’t Hooft G.,How Instantons Solve the U(1)Problem, Phys. Rep.,142 (1986) 357.

    MathSciNet  Google Scholar 

  83. Dalitz R. H.,On the Analysis of τ-Meson data and the Nature of the τ-Meson, Philos. Mag.,44 (1953) 1068;Dalitz R. H.,Isotopic Spin Changes in τ and θ Decay, Proc. Phys. Soc. A,69 (1956) 527; Dalitz R. H.,Present Status of τ Spin-Parity, inProceedings of the Sixth Annual Rochester Conference on High Energy Nuclear Physics (Interscience Publishers, Inc., New York) 1956, p. 19; for a detailed record of the events which led to the (θ-τ) puzzle see Dalitz R. H.,Kaon Decays to Pions: the τ-θ Problem, inHistory of Original Ideas and Basic Discoveries in Particle Physics, edited by H. B. Newman and T. Ypsilantis (Plenum Press, New York, London) 1994, p. 163.

    Google Scholar 

  84. Gell-Mann M. andPais A.,Behavior of Neutral Particles under Charge Conjugation, Phys. Rev.,97 (1955) 1387.

    MathSciNet  Google Scholar 

  85. Lande K., Booth E. T., Impeduglia J., Lederman L. M. andChinowski W.,Observation of Long-Lived Neutral V Particles, Phys. Rev.,103 (1956) 1901.

    Google Scholar 

  86. Adair R., Chinowsky W., Crittenden R., Leipuner L. B., Musgrave B. andShively F. T.,Anomalous Regeneration of K 01 Mesons from K 02 Mesons, Phys. Rev.,132 (1963) 2285.

    Google Scholar 

  87. Wu C. S., Lee T. D., Cabibbo N., Weisskopf V. F., Ting S. C. C., Villi C., Conversi M., Petermann A., Wiik B. H. andWolf G.,The Origin of the Third Family, edited byO. Barnabei,L. Maiani,R. A. Ricci andF. Roversi Monaco (Academy of Sciences, Bologna University, INFN, SIF, Rome) 1997 and (World Scientific) 1998.

    Google Scholar 

  88. Gell-Mann M.,The Eightfold Way — A Theory of Strong-Interaction Symmetry, California Institute of Technology Synchrotron Lab. Report, 20 (1961); Ne’eman Y.,Derivation of Strong Interactions from a Gauge Invariance, Nucl. Phys.,26 (1961) 222; The experimental confirmation, in 1964, by Samios and collaborators [91] of the existence of the missing member of the baryonic decuplet, Ω, appeared to be, at the time, a triumph for the “eightfold way”. The choice of the letter Ω, the last in the Greek alphabet, was due to the conviction that this particle was going to be the last ever to be discovered. See also: M. Gell-Mann and Ne’eman Y.,The Eightfold Way (W. A. Benjamin inc., New York and Amsterdam) 1964.

  89. Barnes V. E., Connolly P. L., Crennell D. J., Culwick B. B., Delaney W. C., Fowler W. B., Hagerty P. E., Hart E. L., Horwitz N., Hough P. V. C., Jensen J. E., Kopp J. K., Lai K. W., Leitner J., Lloyd J. L., London G. W., Morris T. W., Oren Y., Palmer R. B., Prodell A. G., Radojictc D., Rahm D. C., Richardson C. R., Samios N. P., Sanford J. R., Shutt R. P., Smith J. R., Stonehill D. L., Strand R. C., Thorndike A. M., Webster M. S., Willis W. J. andYamamoto S. S.,Observation of a Hyperon with Strangeness Minus Three, Phys. Rev. Lett.,12 (1964) 204.

    Google Scholar 

  90. Gell-Mann M.,A Schematic Model of Baryons and Mesons, Phys. Lett.,8 (1964) 214;Zweig G.,Fractionally Charged Particles and SU 6, CERN Report TH,401 (1964), and Erice Lecture 1964, inSymmetries in Elementary Particle Physics, edited by A. Zichichi (Academic Press, New York, London) 1965.

    Google Scholar 

  91. Lipkin H. J.,Particle Physics for Nuclear Physicists, inPhysique Nucléaire, Les-Houches 1968, edited byC. De Witt andV. Gillet (Gordon and Breach, N.Y.) 1969, p. 585;Lipkin H. J.,Triality, Exotics and the Dynamical Basis of the Quark Model, Phys. Lett. B,45 (1973) 267;Nambu Y.,A Systematics of Hadrons in Subnuclear Physics, inPreludes in Theoretical Physics, edited by A. de-Shalit, H. Feshbach and L. Van Hove (North Holland Pub. Comp., Amsterdam) 1966, p. 133.

    Google Scholar 

  92. Greenberg O. W.,Spin and Unitary-Spin Independence in a Paraquark Model of Baryons and Mesons, Phys. Rev. Lett.,13 (1964) 598.

    Google Scholar 

  93. Han M. Y. andNambu Y.,Three-Triplet Model with Double SU(3)Symmetry, Phys. Rev. B,139 (1965) 1006.

    MathSciNet  Google Scholar 

  94. Fritzsch H., Gell-Mann M. andLeutwyler H.,Advantages of the Color Octet Gluon Picture, Phys. Lett. B,47 (1973) 365.

    Google Scholar 

  95. ’t Hooft G.,Can We Make Sense Out of Quantum Chromodynamics?, inThe Whys of Subnuclear Physics, Erice 1977, edited byA. Zichichi (Plenum Press, New York and London) 1978, p. 943.

    Google Scholar 

  96. ’t Hooft G.,Gauge Theories with Unified, Weak, Electromagnetic and Strong Interactions, inEPS Int. Conf. on High Energy Physics, Palermo, 23–28 June 1975, edited byA. Zichichi (Editrice Compositori, Bologna) 1976, p. 1225.

    Google Scholar 

  97. Lee T. D.,Are Matter and Antimatter Symmetric?, inProceedings of the Symposium to celebrate the 30th anniversary of the Discovery of Nuclear Antimatter, edited byL. Maiani andR. A. Ricci,Proc. SIF, Vol. 53 (Editrice Compositori, Bologna) 1995, p. 1.

    Google Scholar 

  98. Zichichi A.,The Antideuteron Experiment — Recollections of the fine times and closing remarks, inProceedings of the Symposium to celebrate the 30th anniversary of the Discovery of Nuclear Antimatter, edited byL. Maiani andR. A. Ricci,Proc. SIF, Vol. 53 (Editrice Compositori, Bologna) 1995, p. 123.

    Google Scholar 

  99. Maiani L. andRicci R. A. (Editors),The Discovery of Nuclear Antimatter, Proc. SIF, Vol. 53 (Editrice Compositori, Bologna) 1995.

    Google Scholar 

  100. Feldman G. J., e+e Annihilation into Hadrons at SPEAR, inE.P.S. Int. Conf. on High Energy Physics, Palermo, 23–28 June 1975, edited byA. Zichichi (Editrice Compositori, Bologna) 1976, p. 233.

    Google Scholar 

  101. Villi C.,The Basic Steps which Led to the Discovery of the Heavy Lepton τ: a Historical Record, inThe Origin of the Third Family, edited byO. Barnabei,L. Maiani,R. A. Ricci andF. Roversi Monaco (Academy of Sciences, Bologna University, INFN, SIF, Rome) and World Scientific 1998.

    Google Scholar 

  102. Aubert J. J., Becker U., Biggs P. J., Burger J., Chen M., Everhart G., Goldhagen P., Leong J., McCorriston T., Rhoades T. G., Rohde M., Ting S. C. C., Wu S. L. andLee Y. Y.,Experimental Observation of a Heavy Particle J,Phys. Rev. Lett.,33 (1974) 1404.

    Google Scholar 

  103. Augustin J.-E., Boyarski A. M., Breidenbach M., Bulos F., Dakin J. T., Feldman G. J., Fischer G. E., Fryberger D., Hanson G., Jean-Marie B., Larsen R. R., Lüth V., Lynch H. L., Lyon D., Morehouse C. C., Paterson J. M., Perl M. L., Richter B., Rapidis P., Schwitters R. F., Tanenbaum W. M., Vannucci F., Abrams G. S., Briggs D., Chinowsky W., Friedberg C. E., Goldhaber G., Hollebeck R. J., Kadyk J. A., Lulu B., Pierre F., Trilling G. H., Whitaker J. S., Wiss J. andZipse J. E.,Discovery of a Narrow Resonance in e+ e Annihilation, Phys. Rev. Lett.,33 (1974) 1406.

    Google Scholar 

  104. A record of the annual evolution in the multitude of baryonic and mesonic states can be found in the proceedings of the Erice Schools [11]. An example of the proliferation in the meson resonances isMeson Resonances and Related Electromagnetic Phenomena, inProceedings of the EPS Conference, Bologna, 1971, edited byR. H. Dalitz andA. Zichichi (Editrice Compositori, Bologna) 1972.

    Google Scholar 

  105. Zichichi A.,First Search for Sequential Heavy Leptons at ADONE, CERN-PPE/93-58 and CERN/LAA/93-18, 2 April 1993. Presented at theSymposium on The τ particle, in honour of Martin Perl’s 65th birthday, SLAC., Stanford, CA, USA, 24 July 1992;and in the Proceedings of the Summer Institute on Particle Physics “The Third Family and the Physics of Flavor”, edited by L. Vassilllian, SLAC CONF-9207140 UC-414 (T/E) (1993) p. 603.

  106. Herb S. W., Hom D. C., Lederman L. M., Sens J. C., Snyder H. D., Yoh J. K., Appel J. A., Brown B. C., Brown C. N., Innes W. R., Ueno K., Yamanouchi T., Ito A. S., Jöstlein H., Kaplan D. M. andKephart R. D.,Observation of a Dimuon Resonance at 9.5 GeVin 400 GeVProton-Nucleus Collisions, Phys. Rev. Lett.,39 (1977) 252;Innes W. R., Appel J. A., Brown B. C., Brown C. N., Ueno K., Yamanouchi T., Herb S. W., Hom D. C., Lederman L. M., Sens J. C., Snyder H. D., Yoh J. K., Fisk R. J., Ito A. S., Jöstlein H., Kaplan D. M. andKephart R. D.,Observation of Structure in the Y Region, Phys. Rev. Lett.,39 (1977) 1240;Ueno K., Brown B. C., Brown C. N., Innes W. R., Kephart R. D., Yamanouchi T., Herb S. W., Hom D. C., Lederman L. M., Snyder H. D., Yoh J. K., Fisk R. J., Ito A. S., Jöstlein H. andKaplan D. M.,Evidence for the Y and a Search for New Narrow Resonances, Phys. Rev. Lett.,42 (1979) 486.

    Google Scholar 

  107. Basile M., Berbiers J., Cara Romeo G., Cifarelli L., Contin A., D’Alì G., Del Papa C., Giusti P., Massam T., Nania R., Palmonari F., Sartorelli G., Spinetti M., Susinno G., Votano L. andZichichi A.,The End of a Myth: High-P T Physics, inQuarks, Leptons, and their Constituents, Erice 1984, edited byA. Zichichi (Plenum Press, New York and London) 1988, p. 1.

    Google Scholar 

  108. Taylor T., Wenninger H. andZichichi A., “Leading”Physics at LHC Including Machine Studies Plus Detector R&D (LAA), Nuovo Cimento A,108 (1995) 1477; and inVacuum and Vacua — The Physics of Nothing, Erice 1995, edited byA. Zichichi (World Scientific) 1996, p. 381.

    Google Scholar 

  109. Basile M., Cara Romeo G., Cifarelli L., Contin A., D’Alì G., Di Cesare P., Esposito B., Giusti P., Massam T., Nania R., Palmonari F., Rossi V., Sartorelli G., Spinetti M., Susinno G., Valenti G., Votano L. andZichichi A.,The “Leading”-Baryon Effect in Strong, Weak, and Electromagnetic Interactions, Lett. Nuovo Cimento,32 (1981) 321.

    Google Scholar 

  110. Basile M., Bonvicini G., Cara Romeo G., Cifarelli L., Contin A., Curatolo M., D’Alì G., Esposito B., Giusti P., Massam T., Nania R., Palmonari F., Petrosino A., Rossi V., Sartorelli G., Spinetti M., Susinno G., Valenti G., Votano L. andZichichi A.,What Can We Learn From High-Energy, Soft (pp)Interactions, inThe Unity of the Fundamental Interactions, Erice 1981, edited byA. Zichichi (Plenum Press, New York and London) 1983, p. 695.

    Google Scholar 

  111. For a complete set of references concerning this topic, see:V. N. Gribov, G. ’t Hooft, G. Veneziano andV. F. Weisskopf,The Creation of Quantum ChromoDynamics and the Effective Energy, edited byN. L. Lipatov (World Scientific) 1998.

  112. Cifarelli L., Massam T., Migani D. andZichichi A.,Evidence for η′ Leading, presented at the35th Course of the Ettore Majorana International School of Subnuclear Physics,Erice, Italy, 26 August–4 September 1997. See also Migani D.,Thesis, Bologna University (July 1997).

  113. Zichichi A.,The Gran Sasso Laboratory and the Eloisatron Project, inOld and New Forces of Nature, Erice 1985, edited byA. Zichichi (Plenum Press, New York and London) 1988, p. 335.

    Google Scholar 

  114. Goldstone J.,Field Theories with Superconductor Solutions, Nuovo Cimento,19 (1961) 154.

    MathSciNet  Google Scholar 

  115. Kalbfleisch G. R., Alvarez L. W., Barbaro-Galtieri A., Dahl O. I., Eberhard P., Humphrey W. E., Lindsey J. S., Merrill D. W., Murray J. J., Rittenberg A., Ross R. R., Shafer J. B., Shively F. T., Siegel D. M., Smith G. A. andTripp R. D.,Observation of a Nonstrange Meson of Mass 959 MeV,Phys. Rev. Lett.,12 (1964) 527;Goldberg M., Gundzik M., Lichtman S., Leitner J., Primer M., Connolly P. L., Hart E. L., Lai K. W., London G., Samios N. P. andYamamoto S. S.,Existence of a New Meson of Mass 960 MeV,Phys. Rev. Lett.,12 (1964) 546.

    Google Scholar 

  116. Bollini D., Buhler-Broglin A., Dalpiaz P., Massam T., Navach F., Navarria F. L., Schneegans M. A. andZichichi A.,Evidence for a New Decay Mode of the X 0-Meson: X0→2γ,Nuovo Cimento A,58 (1968) 289.

    Google Scholar 

  117. Bollini D., Buhler-Broglin A., Dalpiaz P., Massam T., Navach F., Navarria F. L., Schneegans M. A. andZichichi A.,The Decay Mode ω→e+e and a Direct Determination of the ω-ϕ Mixing Angle, Nuovo Cimento A,57 (1968) 404; see also Bollini D., Buhler-Broglin A., Dalpiaz P., Massam T., Navach F., Navarria F. L., Schneegans M. A. and Zichichi A.,Observation of the Rare Decay Mode of the ϕ-Meson: ϕ→e+e,Nuovo Cimento A 56 (1968) 1173.

    Google Scholar 

  118. Zicmchi A.,The Basic SU(3)Mixing: ω↔ω1, inEvolution of Particle Physics (Academic Press Inc., New York, London) 1970, p. 299.

    Google Scholar 

  119. Dalpiaz P., Frabetti P. L., Massam T., Navarria F. L. andZichichi A.,Measurement of the Branching Ratio Γ(X0→γγ)/Γ(X0→TOTAL),Phys. Lett. B,42 (1972) 377.

    Google Scholar 

  120. Anselmo F., Cifarelli L., Petermann A. andZichichi A.,The Convergence of the Gauge Couplings at EGUT and Above: Consequences for α3(Mz)and SUSY Breaking, Nuovo Cimento A,105 (1992) 1025.

    Google Scholar 

  121. Anselmo F., Cifarelli L., Petermann A. andZichichi A.,Analytic Study of the Supersymmetry-Breaking Scale at Two Loops, Nuovo Cimento A,105 (1992) 1201;Petermann A. andZichichi A.,The Full Two-Loop Approach to the Problem of the Light Supersymmetric Threshold, Nuovo Cimento A,108 (1995) 105.

    Google Scholar 

  122. Zichichi A.,Understanding Where the Supersymmetry Threshold Should Be, inProceedings of the Workshop on Ten Years of SUSY Confronting Experiment, CERN,Geneva, Switzerland, 7–9 September 1992, CERN-TH 6707/92-PPE/92-180, 94. CERN-PPE/92-149 and CERN/LAA/MSL/92-017, 7 September 1992.

  123. Lopez J. L., Nanopoulos D. V., Park G. T. andZichichi A.,New Precision Electroweak Tests of SU(5)×U(1)Supergravity, Phys. Rev. D,49 (1994) 4835.

    Google Scholar 

  124. Lopez J. L., Nanopoulos D. V. andZichichi A.,The Simplest, String-Derivable,Supergravity Model and its Experimental Predictions, Phys. Rev. D,49 (1994) 343.

    Google Scholar 

  125. Anselmo F., Anzivino G., Arzarello F., Bari G., Basile M., Barillari T., Bellagamba L., Berbiers J., Bertin R., Block F., Boscherini D., Bruni G., Bruni P., Cara Romeo G.,Chiarini M., Cifarelli L., Cindolo F., Ciralli F., Contin A., Crotty I., D’Ambrosio C., Dardo M., De Pasquale S., De Salvo R.,Fava L., Frasconi F., Ford P., Giusti P., Gys T., Hatzifotiadou D., Hourican M., Kaur M., Iacobucci G., La Commare G., Lamas Valverde J., Larsen H., Laurenti G., Leutz H., Levi G., Lopez J. L., Maccarrone G., Margotti A., Marino M., Massam T., Menshikov A., Musso C., Nania R., Nanopoulos D. V., Nemoz C., Panzieri D., Peterman A., Piedigrossi D., Puertolas D., Pois H., Qian S., Ruffino E., Sartorelli G., Schipper I., Seguinot J., Tailhardat S., Timellini R., Vivargent M., Wang X., Williams M. C. S., Ypsilantis T. andZichichi A.,Acoplanar Di-Leptons and Mixed Events on the Basis of two Supergravity Model Predictions, Nuovo Cimento A,106 (1993) 1389.

    Google Scholar 

  126. Lopez J. L., Nanopoulos D. V., Park G. T., Wang X. andZichichi A.,Experimental Aspects of SU(5) × U(1)Supergravity, Phys. Rev. D,50 (1994) 2164.

    Google Scholar 

  127. Lopez J. L., Nanopoulos D. V. andZichichi A.,A String no-Scale Supergravity Model and its Experimental Consequences, Phys. Rev. D,52 (1995) 4178.

    Google Scholar 

  128. Lopez J. L., Nanopoulos D. V. andZichichi A.,No-Scale Supergravity Confronts LEP Diphoton Events, October 1996 —hep-ph/9610235.

  129. Anselmo F., Cifarelli L. andZichichi A.,A Study of the Various Approaches to MGUT and αGUT,Nuovo Cimento A,105 (1992) 1335.

    Google Scholar 

  130. Anselmo F., Cifarelli L. andZichichi A., Aχ2-Testto Study the α1, α2, α3 Convergence for High-Precision LEP data, Having in Mind the SUSY Threshold, Nuovo Cimento A,105 (1992) 1357.

    Google Scholar 

  131. Tomonaga S.,On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields, Prog. Theor. Phys.,1 (1946) 27;Koba Z., Tati T. andTomonaga S.,On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II., Prog. Theor. Phys.,2 (1947) 101, 198;Kanesawa S. andTomonaga S.,On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. V., Prog. Theor. Phys.,3 (1948) 101;Tomonaga S.,On Infinite Field Reactions in Quantum Field Theory, Phys. Rev.,74 (1948) 224.

    MathSciNet  Google Scholar 

  132. Schwinger J.,On Quantum-Electrodynamics and the Magnetic Moment of the Electron,Phys. Rev.,73 (1948) 416;Schwinger J.,Quantum Electro-dynamics. I. A Covariant Formulation, Phys. Rev.,74 (1948) 1439.

    MathSciNet  Google Scholar 

  133. Feynman R. P.,Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys.,20 (1948) 367;Peynman R. P.,A Relativistic Cut-Off for Classical Electrodynamics, Phys. Rev.,74 (1948) 939;Feynman R. P.,Relativistic Cut-Off for Quantum Electrodynamics, Phys. Rev.,74 (1948) 1430;Wheeler J. A. andFeynman R. P.,Interaction with the Absorber as the Mechanism of Radiation, Rev. Mod. Phys.,17 (1945) 157.

    MathSciNet  Google Scholar 

  134. Dyson F. J.,The Radiation Theories of Tomonaga, Schwinger, and Feynman, Phys. Rev.,75 (1949) 486.

    MathSciNet  Google Scholar 

  135. Dyson F. J.,The S Matrix in Quantum Electrodynamics, Phys. Rev.,75 (1949) 1736.

    MathSciNet  Google Scholar 

  136. Proceedings of the 12th Solvay Conference on “The Quantum Theory of Fields”, University of Brussels, October 1961 (Interscience Publishers, New York) 1961.

  137. Stueckelberg E. C. G. andPetermann A.,The Normalization Group in Quantum Theory, Helv. Phys. Acta,24 (1951) 317;Stueckelberg E. C. G. andPetermann A.,La Normalisation des Constantes dans la Théorie des Quanta, Helv. Phys. Acta,26 (1953) 499;Bogoliubov N. N. andShirkov D. V.,Introduction to the Theory of Quantized Fields (Interscience Publishers, New York) 1959;Petermann A.,Renormalization Group and the Deep Structure of the Proton, Phys. Rep.,53 (1979) 157.

    Google Scholar 

  138. Gell-Mann M. andLow F. E.,Quantum Electrodynamics at Small Distances, Phys. Rev.,95 (1954) 1300.

    MathSciNet  Google Scholar 

  139. For a lucid decription of the subject seeColeman S.,Renormalization and Symmetry: a review for Non-Specialists, inProperties of the Fundamental Interactions, Erice 1971, edited byA. Zichichi (Editrice Compositori, Bologna) 1973, p. 605;Collins J. C.,Renormalization (Cambridge University Press) 1984.

    Google Scholar 

  140. ’t Hooft G. andVeltman M.,Regularization and Renormalization of Gauge Fields, Nucl. Phys. B,44 (1972) 189.

    MathSciNet  Google Scholar 

  141. Bollini C. G. andGiambiagi J. J.,Lowest Order Divergent Graphs in v-Dimensional Space, Phys. Lett. B,40 (1972) 566;Ashmore J. F.,A Method of Gauge-Invariant Regularization, Lett. Nuovo Cimento,4 (1972) 289.

    Google Scholar 

  142. Coleman S.,Secret Symmetry. An Introduction to Spontaneous Symmetry Breakdown and Gauge Fields, inLaws of Hadronic Matter, Erice 1973, edited byA. Zichichi (Academic Press, New York, London) 1975, p. 139.

    Google Scholar 

  143. ’t Hooft G.,Renormalization of Massless Yang-Mills Fields, Nucl. Phys. B,33 (1971) 173.

    Google Scholar 

  144. ’t Hooft G.,Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. B,35 (1971) 167.

    Google Scholar 

  145. ’t Hooft G. andVeltman M.,Combinatorics of Gauge Fields, Nucl. Phys. B,50 (1972) 318.

    MathSciNet  Google Scholar 

  146. Zichichi A. (Editor),The Superworld I, Erice 1986 (Plenum Press, New York, London) 1990;The Superworld II, Erice 1987 (Plenum Press, New York, London) 1990;The Superworld III, Erice 1988 (Plenum Press, New York, London) 1990.

    Google Scholar 

  147. Maiani L.,All You need to Know about the Higgs Boson, inProceedings Ecole d’Ete de Physique des Particules, Gif-Sur-Yvette (1979) p. 45.

  148. ’t Hooft G.,Under the Spell of the Gauge Principle (World Scientific) 1994.

  149. Landau L. D.,Fundamental Problems, inTheoretical Physics in the Twentieth Century;a Memorial Volume to Wolfgang Pauli, edited byM. Fierz andV. F. Weisskopf (Interscience Publishers, New York) 1960, pp. 245–248; Landau L. D. and Pomeranchuk I.,On Point Interaction in Quantum Electrodynamics, Dokl Akad. Nauk SSSR,102 (1955) 489;Landau L. D.,On the Quantum Theory of Fields, Niels Bohr and the Development of Physics, edited byW. Pauli (Pergamon Press, New York) 1955, pp. 52–69. For a discussion of the basic problems see Wightman A. S.,Should we Believe in Quantum Field Theory?, inThe Whys of Subnuclear Physics, Erice 1977, edited by A. Zichichi (Plenum Press, New York, London) 1979, p. 983.

    Google Scholar 

  150. Glashow S. L.,Partial-Symmetries of Weak Interactions, Nucl. Phys.,22 (1961) 579.

    Google Scholar 

  151. Feynman R. P.,Quantum Theory of Gravitation, Acta Phys. Polonica,24 (1963) 697.

    MathSciNet  Google Scholar 

  152. Veltman M.,Unitarity and Causality in a Renormalizable Field Theory with Unstable Particles, Physica,29 (1963) 186;Veltman M.,Perturbation Theory of Massive Yang-Mills Fields, Nucl. Phys. B,7 (1968) 637;Reiff J. andVeltman M.,Massive Yang-Mills Fields, Nucl. Phys. B,13 (1969) 545;Veltman M.,Generalized Ward Identities and Yang-Mills Fields, Nucl. Phys. B,21 (1970) 288; van Dam H. and Veltman M.,Massive and Mass-Less Yang-Mills and Gravitational Fields, Nucl. Phys. B,22 (1970) 397.

    MathSciNet  Google Scholar 

  153. Salam A. andWard J. C.,Electromagnetic and Weak Interactions, Phys. Lett.,13 (1964) 168;Weinberg S.,A Model of Leptons, Phys. Rev. Lett.,19 (1967) 1264;Salam A.,Weak and Electromagnetic Interactions, Nobel Symposium 1968, edited byN. Svartholm (Almqvist and Wiksell, Wiley Interscience) 1968, p. 367.

    MathSciNet  Google Scholar 

  154. Becchi C., Rouet A. andStora R.,Renormalization of the Abelian Higgs-Kibble Model,Commun. Math. Phys.,42 (1975) 127;Becchi C., Rouet A. andStora R.,Renormalization of Gauge Theories, Ann. Phys.,98 (1976) 287;Tyutin I. V.,Lebedev Preprint FIAN (1975) 39, unpublished.

    MathSciNet  Google Scholar 

  155. Cabibbo N.,Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett.,10 (1963) 531.

    Google Scholar 

  156. Cabibbo N.,Leptonic Decays and the Unitary Symmetry, inStrong Electromagnetic and Weak Interactions, Erice 1963, edited byA. Zichichi (W. A. Benjamin Inc, New York, Amsterdam) 1964, p. 191.

    Google Scholar 

  157. Feynman R. P.,Consequences of SU(3)Symmetry in Weak Interactions, inSymmetries in Elementary Particle Physics, Erice 1964, edited byA. Zichichi (Academic Press, New York, London) 1965, p. 111.

    Google Scholar 

  158. Gell-Mann M. andLevy M.,Nuovo Cimento,16 (1960) 705; in a footnote of this paper (already quoted [72] and where the authors present the σ-model) the authors suggest that a parameter can be associated with the “strange” currents in order not to spoil the universality of the Fermi coupling.

    MathSciNet  Google Scholar 

  159. Glashow S. L., Iliopoulos J. andMaiani L.,Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D,2 (1970) 1285.

    Google Scholar 

  160. Kobayashi M. andMaskawa T.,CP-Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys.,49 (1973) 652.

    Google Scholar 

  161. Bell J. S.,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, London) 1987.

    Google Scholar 

  162. Treiman S. B., Jackiw R., Zumino B. andWitten E. (Editors),Current Algebra and Anomalies (World Scientific) 1986, p. 81, 211.

  163. Jackiw R. andRebbi C.,Vacuum Periodicity in a Yang-Mills Quantum Theory, Phys. Rev. Lett.,37 (1976) 172; for a clear lecture on the topic see Coleman S.,The uses of instantons, inThe Whys of Subnuclear Physics, Erice 1977, edited by A. Zichichi (Plenum Press, New York, London) 1979, p. 805.

    Google Scholar 

  164. Callan C. G., Dashen R. F. andGross D. J.,The Structure of the Gauge Theory Vacuum,Phys. Lett. B,63 (1976) 334.

    Google Scholar 

  165. Coleman S.,The uses of instantons, inThe Whys of Subnuclear Physics, Erice 1977, edited byA. Zichichi (Plenum Press, New York and London) 1979, p. 805.

    Google Scholar 

  166. Zichichi A.,The INFN Eloisatron Project, inProceedings of the HARC ’93 International Worskop (World Scientific) 1994, p. 363.

  167. Basile M., Berbiers J., Bonvicini G., Boschi E., Cabibbo N., Cara Romeo G., Cifarelli L., Civita M., Contin A., Curatolo M., D’Alì G., Dardo M., Del Papa C., Esposito B., Ferrario L., Ferrero M. I., Galassini S., Giusti P., Laakso I., Leo A. R., Leo M., Luches G., Lunardi P., Marino A., Massam T., Nania R., Nassisi V., Palmonari F., Puglisi M., Resmini F., Rizzuto C., Rotelli P., Sartorelli G., Soliani G., Spinetti M., Stringa L., Susinno G., Tazzari S., Votano L. andZichichi A.,Eloisatron (The European LOng Intersecting Storage Accelerator), INFN/AE-83/7, June 1983; INFN/AE-84/2, January 1984 (revised version 1985); presented at theGalileo Galilei and Alfred B. Nobel Celebrations “Science for Peace”, Sanremo and Rome, Italy, 1–11 May 1983.

  168. Aglietta C., Alberini C., Badino G., Baei G., Basile M., Bassetti M., Berbiers J., Bertin A., Boschi E., Braginski V., Bruzzese R., Cabibbo N., Cara Romeo G., Casaccia R., Castagnoli C., Castellina A., Castelvetri A., Cifarelli L., Cindolo F., Civita M., Contin A., D’Alì G., Dardo M., Del Papa C., De SabbataV.,Ferrario L., Fulgione W., Galassini S., Galeotti P., Gasperini M., Giusti P., Goldoni R., Iacobucci G., Laakso I., Leo A. R., Leo M., Luches G., Maccarrone G., Marino A., Massam T., Melnikov V. N., Meunier R., Motta F., Nania R., Nassisi V., Navarra G., Palmonari F., Papini G., Passotti G., Pelfer P., Pocci G., Prisco G., Puglisi M., Ricci M., Rinaldi G., Rizzuto C., Rohrbach F., Rotelli P., Saavedra O., Sacchetti N., Sartorelli G., Soliani G., Spadoni M., Steuer M., Susinno G., Tazzari S., Thorne K., Torelli G., Trinchero G. C., Vallania P., Venturi G., Vernetto S., Villa F., Vitale A., Votano L., Willutzky M. andZichichi A.,The INFN Eloisatron Project, inProceedings of the INFN Eloisatron Workshop (Plenum Press, New York) 1988, p. 297; andRECFA, CERN, Geneva,Switzerland, 19 June 1986.

    Google Scholar 

  169. Zichichi A.,The Eloisatron Project: Eurasiatic LOng Intersecting Storage Accelerator, inProceedings on New Aspects of High-Energy Proton-Proton Collisions (Plenum Press, New York, London) 1989, p. 1.

    Google Scholar 

  170. Zichichi A. (Editor),Physics up to 200 TeV, Erice 1990 (Plenum Press, New York, London) 1991.

    Google Scholar 

  171. Zichichi A.,Eloisatron: New Strategies for Supercolliders, inProceedings of the 9th Workshop of the INFN Eloisatron Project Perspectives for New Detectors in Future Supercolliders (World Scientific) 1991, p. 238.

  172. Zichichi A.,Why 200 TeV, inProceedings of the 12th Workshop of the INFN Eloisatron Project (Plenum Press, New York, London) 1991, p. 1.

    Google Scholar 

  173. Zichichi A.,The INFN Eloisatron Project, CERN-PPE/93-62 and CERN/LAA/93-20, 13 April 1993.

  174. Zichichi A.,The Eloisatron Project, inThe Superworld II, Erice 1987, edited byA. Zichichi (Plenum Press, New York, London) 1990, p. 443.

    Google Scholar 

  175. Alberini C., Bari G., Basile M., Berbiers J., Cara Romeo G., Casaccia R., Cifarelli L., Cindolo F., Contin A., D’Alì G., Del Papa C., De Pasquale S., Iacobucci G., Laakso I., Lee T. D., Maccarrone G., Massam T., Meunier R., Motta F., Nania R., Palmonari F., Perotto E., Prisco G., Rohrbach F., Rotelli P., Sartorelli G., Susinno G., Votano L.,Willutzky M. andZichichi A.,The Lepton Asymmetry Analyser, CERN/SPSC 86-3, SPSC/P200 Add. 1, March 1986; INFN/AE-86/4, March 1986; CERN/SPSC 86-18, SPSC/P200 Add. 2, May 1986.

  176. Zichichi A. et al., The LAA Project, Report n. 1, CERN/LAA, 15 December 1986.

  177. Zichichi A. et al., The LAA Project, Report n. 2, CERN/LAA, 25 June 1987.

  178. Anzivino G., Bari G., Basile M., Becker U., Berbiers J., Boch R. K., Cara Romeo G., Casaccia R., Charpak G., Cifarelli L., Cindolo F., Comby G., Contin A., D’Alì G., Del Papa C., De Pasquale S., Guerard B., Heijne H., Horisberger R., Iacobucci G., Jarlskog G., Jarron P., Kelly W. M., Kirkby J., Laakso I., Lee T. D., Leutz H., Maccarrone G., Malos J., Massam T., Meunier R., Mine P., Mork G., Motta F., Nania R., Palmonari F., Perotto E., Prisco G., Rohrbach F., Rotelli P., Sartorelli G., Sauli F., Saxon D. H., Scigocki D., Schlein P., Suffert M., Susinno G., Vivargent M., Votano L., Wallraff W., Wigmans R., Willutzky M., Winter K., Wittgenstein F. andZichichi A.,The LAA Project, CERN-EP/87-122, 14 July 1987.

  179. Anzivino G., Bari G., Basile M., Becker U., Berbiers J., Boch R. K., Cara Romeo G., Casaccia R., Charpak G., Cifarelli L., Cindolo F., Comby G., Contin A., D’Alì G., Del Papa C., De Pasquale S., Guerard B., Heijne H., Horisberger R., Iacobucci G., Jarlskog G., Jarron P., Kelly W. M., Kirkby J., Laakso I., Lee T. D., Leutz H., Maccarrone G., Malos J., Massam T., Meunier R., Mine P., Mork G., Motta F., Nania R., Palmonari F., Perotto E., Prisco G., Rohrbach F., Rotelli P., Sartorelli G., Sauli F., Saxon D. H., Scigocki D., Schlein P., Suffert M., Susinno G., Vivargent M., Votano L., Wallraff W., Wigmans R., Willutzky M., Winter K., Wittgenstein F. andZichichi A.,The LAA Project, ICFA — Instrumentation Bulletin, 3, September (1987).

  180. Zichichi A. et al., The LAA Project, Report n. 3, CERN/LAA, 19 November 1987.

  181. Zichichi A. et al.,Perspectives for a New Detector at a Future Supercollider: the LAA Project, inHeavy Flavours and High-Energy Collisions in the 1–100 TeVRange (Plenum Press, New York, London) 1989, p. 357.

    Google Scholar 

  182. Zichichi A. et al., The LAA Project, Report n. 4, CERN/LAA/88-1, 25 July 1988.

  183. Anzivino G. et al., The LAA Project, Rivista Nuovo Cimento,13, no. 5 (1990).

  184. Zichichi A.,The LAA Project: Second Year of Activity, inThe Challenging Questions,Erice 1989, edited byA. Zichichi (Plenum Press, New York, London) 1990, p. 221.

    Google Scholar 

  185. Acosta D. et al., Advances in Technology for High-Energy Subnuclear Physics: Contribution of the LAA Project, Rivista Nuovo Cimento,13, no. 10–11 (1990).

  186. Zichichi A. et al.,The Main Achievements of the LAA Project, Report n. 7, CERN/LAA/91-1, 1 March 1991.

  187. Zichichi A.,The Main Achievements of the LAA Project, inPhysics up to 200 TeV, Erice 1990, edited byA. Zichichi (Plenum Press, New York, London) 1991, p. 327.

    Google Scholar 

  188. Anselmo F., Block F., Brugnola G., Cifarelli L., Eskut E., Hatzifotiadou D., La Commare G., Maidantchik C., Marino M., QiAN S., Shabelski Yu. M., Xexeo G., Ye Y. andZichichi A.,The Monte Carlo Simulation Laboratory (MSL) of LAA, CERN/DRDC, 92-44, LAA Status Report, 3 September 1992.

  189. Anselmo F., Cifarelli L., Eskut E. andShabelski Yu. M.,Predictions for Secondary Particle Production at Existing and Future Hadron-Hadron Colliders, Nuovo Cimento A,105 (1992) 1371.

    Google Scholar 

  190. Cifarelli L., Eskut E. andShabelski Yu. M.,Charm and Beauty Hadroproduction Models: QGSM vs. Lund, Nuovo Cimento A,106 (1993) 389.

    Google Scholar 

  191. Anselmo F., Block F., Brugnola G., Cifarelli L., Hatzifotiadou D., La Commare G. andMarino M.,Neural Networks for Higgs Search, Nuovo Cimento A,107 (1994) 129.

    Google Scholar 

  192. Anselmo F. et al.,Heavy Higgs Search with Hadron Supercolliders up to √s = 200 TeV,Nuovo Cimento A,107 (1994) 783.

    Google Scholar 

  193. Glashow S. L.,The End of Superworld III, inThe Super World III, Erice 1988, edited byA. Zichichi (Plenum, New York, London) 1990, p. 411;Glashow S. L.,Particle Physics in the Nineties, inPhysics up to 200 TeV,Erice 1990, edited by A. Zichichi (Plenum, New York, London) 1991, p. 1.

    Google Scholar 

  194. Gross D. J.,The Glorious Future of Particle Physics, inFrom Superstring to Present-day Physics, Erice 1994, edited by A. Zichichi (World Scientific) 1995, p. 1.

  195. Lee T. D.,The Physical Vacuum as a Condensate, inEffective Theories and Fundamental Interactions, Erice 1996, edited by A Zichichi (World Scientific) 1997, p. 3.

  196. Wilczek F.,Beyond the Standard Model, presented at the35th Course of the “Ettore Majorana” International School of Subnuclear Physics, Erice, Italy, 26 August-4 September 1997.

  197. ’t Hooft G.,The Limits of our Imagination in Elementary Particle Theory, presented at the35th Course of the “Ettore Majorana” International School of Subnuclear Physics,Erice, Italy, 26 August-4 September 1997.

  198. As early as 1938 E. C. G. Stueckelberg introduced what is now called the “Baryon number conservation”. Stueckelberg noted that the number of protons and neutrons (the heavy particles) in the Universe can never change, otherwise matter itself would be unstable. This postulate became of great relevance with the advent of the Grand Unified Theories in the Seventies.

  199. Zichichi A.,Scienza ed Emergenze Planetarie — Il Paradosso dell’Era Moderna (Rizzoli) 1st edition 1993, 3rd edition 1994 (Supersaggi Bur Rizzoli) 1st edition 1996, 6th edition 1998.

  200. Zichichi A.,L’Infinito (Rizzoli-Bur) 1st edition 1988, 7th edition 1994 and a more recent edition by (Pratiche Editrice) 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zichichi, A. Fifty years of subnuclear physics: from past to future and the ELN project. Riv. Nuovo Cim. 21, 1–98 (1998). https://doi.org/10.1007/BF02872058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872058

Navigation