Skip to main content
Log in

Sprout development and processing quality changes in potato tubers stored under ethylene: 1. Effects of ethylene concentration

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Ethylene effectively inhibits sprouting of potatoes (Solanum tuberosum L.) during storage, but it often darkens fry color. The objective of the work described here was to determine if altering the concentration of ethylene applied would reduce the darkening while retaining adequate sprout inhibition. Trials were conducted over three consecutive years (1991–1992, 1992–1993, and 1993–1994). Tubers of cv Russet Burbank (ca 150–300 g) were stored at 9 C for 25 wk in closed chambers in a refrigerated room under continuous exposure to 0.4, 4, 40, or 400 µL L−1 ethylene gas delivered with the ventilation airstream (ca 0.5 air exchanges per h, for 6 h each day). Untreated control and chlorpropham-treated (CIPC) check tubers were stored under the same conditions but without ethylene supplementation. Sprout number, length, and biomass, fry color, loss of tuber mass, disease, and dry matter content were evaluated at 5-wk intervals. Dose-dependent effects (400>40>4>0.4 µL L−1) of ethylene on sprout growth and fry color were observed. The 400, 40, and 4 µL L−1 ethylene treatments inhibited sprout growth as effectively as CIPC, whereas in 0.4 µL L−1 ethylene sprouting was midway between CIPC and the untreated control. Sprout mass and maximum sprout length in all ethylene treatments were significantly lower (P<0.05) than in the untreated control. Compared with the initial value (57.3 Agtron reflectance units [ARu]), after 5 wk of storage fry color was up to 5 ARu darker in the ethylene treatments, but recovered steadily at the subsequent evaluation dates. At 25 wk of storage the fry color of tubers from the 40 and 4 µL L−1 ethylene treatments were, however, still darker than tubers stored with CIPC. Inhibition of sprout growth was slightly more effective in the 400 and 40 µL L−1 ethylene treatments than in 4 µL L−1, although there were no significant differences (P<0.01) in fry color between these treatments. In comparison with the other ethylene treatments, fry color in 0.4 µL L−1 ethylene was lighter, but inhibition of sprout growth was significantly (P<0.05) poorer. There were no differences in tuber disease incidence or dry matter content between the treatments. At 25 wk, the untreated tubers had ca 50% greater loss of tuber mass than any other treatment, attributable to their heavy sprouting. Loss of tuber mass in the ethylene treatments was not significantly different (P<0.001) from that in the CIPC treatment.

Resumen

El etileno inhibe eficazmente el brotamiento de la papa (Solanum tuberosum L.) durante el almacenamiento, pero a menudo oscurece el color de la fritura. El objetivo de este trabajo fue determinar si alterando la concentración de etileno aplicado se puede reducir el oscurecimiento, reteniendo una adecuada inhibición del brotamiento. Las pruebas se realizaron durante tres años consecutivos (1991–1992, 1992–1993, y 1993–1994). Tubérculos del cultivar Russet Burbank (ca.150–300 g) se almacenaron a 9EC por 25 semanas en cámaras cerradas en un cuarto refrigerado bajo continua exposición a gas etileno 0.4, 4, 40 y 400 µL L−1, repartido con la corriente de aire de ventilación (ca. 0.5 de cambios de aire, por 6 horas diarias). Los tubérculos sin tratar y los testigos tratados con cloroprofan (CIPC) fueron almacenados bajo las mismas condiciones pero sin suplemento de etileno. A cinco semanas de intervalo se evaluó el número de brotes, largo y biomasa, color de fritura, pérdida de masa del tubérculo, enfermedad y contenido de materia seca. Se observaron los efectos dependientes de la dosis de etileno (400>40>4>0.4 µL L−1) sobre el crecimiento del brote y el color de la fritura. Los tratamientos de etileno 400, 40 y 4 µL L−1 de etileno inhibieron el crecimiento del brote tanto como el CIPC y el testigo sin tratamiento, mientras que en 0.4F µL L−1 el brotamiento con etileno fue la mitad entre CIPC y el testigo sin tratamiento. La masa de los brotes y la longitud máxima en todos los tratamientos con etileno fueron significativamente menores (P<0.05) que en el testigo sin tratar. Comparado con los valores iniciales (57.3 unidades Agtron de reflectancia [ARu]), después de cinco semanas de almacenamiento, el color de fritura estuvo hasta 5 ARu más oscuro en los tratamientos de etileno, pero se recuperó regularmente en las siguientes fecha de evaluación. A las 25 semanas de almacenaje, el color de fritura de los tratamientos 40 y 4 µL L−1 de etileno, fue, sin embargo, todavía más oscuro que los tubérculos almacenados con CIPC. La inhibición de crecimiento del brote fue ligeramente más efectiva en el tratamiento con etileno 400 y 40 µL L−1 que en 4 µL L−1, aunque no hubo diferencias significativas (P<0.01) en el color de fritura entre estos tratamientos. En comparación con los otros tratamientos de etileno, el color de fritura en etileno 0.4 µL L−1 fue más ligero, pero la inhibición de brotamiento fue significativamente (P<0.05) menor. No hubo diferencias en la incidencia de enfermedades del tubérculo o contenido de materia seca entre los tratamientos. A las 25 semanas, los tubérculos sin tratar tuvieron 50% más pérdida de la masa del tubérculo que ningún otro tratamiento, atribuible a su intenso brotamiento. La pérdida de masa del tubérculo en los tratamientos con etileno no fue significativamente diferente (P<0.001) del tratamiento con CIPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARu:

Agtron reflectance units, % reflectance

LS:

large sprouts, >5 mm long

SS:

small sprouts, 2 to 5 mm long

REML:

restricted maximum likelihood statistical analysis method

Literature cited

  • Buitelaar N. 1987. Sprout inhibition in ware potato storage.In: A Rastovski, A van Es, et al. (eds), Storage of Potatoes—Post-harvest Behavior, Store Design, Storage Practice, Handling. Pudoc, Wageningen, The Netherlands. pp 331–341.

    Google Scholar 

  • Burton, WG, A van Es and KJ Hartmans. 1992. The physics and physiology of storage,In: PM Harris (ed), The Potato Crop: The Scientific Basis for Improvement, Ed 2. Chapman and Hall, London, UK. pp 608–727.

    Google Scholar 

  • Crossley S J, and RP Mascall. 1997. Pesticide residues—UK and EC legislation. Postharvest News and Info 8:23–26.

    Google Scholar 

  • Davies HV. 1990. Carbohydrate metabolism during sprouting. Am Potato J 67:815–827.

    CAS  Google Scholar 

  • Daniels-Lake BJ. 2001. Potato tuber sprouting and processing quality as affected by concentration and frequency of exposure to ethylene gas during long-term storage. MSc thesis, Nova Scotia Agricultural College/Dalhousie University, Halifax, Nova Scotia, Canada.

    Google Scholar 

  • Day DA, GP Arron, RE Christoffersen, and GG Laties. 1978. Effect of ethylene and carbon dioxide on potato metabolism. Plant Physiol 62:820–825.

    Article  PubMed  CAS  Google Scholar 

  • Dwelle RB, and GF Stallknecht. 1978. Respiration and sugar content of potato tubers as influenced by storage temperature. Am Potato J 55:561–571.

    Article  CAS  Google Scholar 

  • Franklin MF, and AD Mann. 1986. DSIGNX: A program for the construction of randomized experimental plans. Scottish Agricultural Statistical Service, Edinburgh, UK.

    Google Scholar 

  • Furlong CR. 1948. Summer potato storage in clamp and cool storage. Agriculture (London) 55:81–85.

    Google Scholar 

  • Genstat Committee. 1993. Genstat 5 Release 3 Reference Manual. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Haard NF. 1971. Differential response of cold-stored potato tubers to ethylene. Am Potato J 48:183–186.

    Article  CAS  Google Scholar 

  • Huelin FE, and J Barker. 1939. The effect of ethylene on the respiration and carbohydrate metabolism of potatoes. New Phytol 38:85–104.

    Article  CAS  Google Scholar 

  • Hughes DL, B Takahashi, H Timm, and M Yamaguchi. 1973. Influence of ethylene on sprout development of seed potato. Am Potato J 50:439–444.

    Article  CAS  Google Scholar 

  • Isherwood FA. 1973. Sugar-starch interconversion inSolanum tuberosum. Phytochem 12:2579–2591.

    Article  CAS  Google Scholar 

  • Knee M, FJ Proctor, and CJ Dover. 1985. The technology of ethylene control: use and removal in post-harvest handling of horticultural commodities. Ann Appl Biol 107:581–595.

    Article  CAS  Google Scholar 

  • O’Neil MJ, ed. 2001. The Merck Index. Merck Research Laboratories, Whitehouse Station, NJ. p 674.

    Google Scholar 

  • Parkin KL, and MA Schwobe. 1990. Effects of low temperature and modified atmosphere on sugar accumulation and chip colour in potatoes (Solanum tuberosum). J Food Sci 55:1341–1433.

    Article  CAS  Google Scholar 

  • Prange RK, W Kalt, BJ Daniels-Lake, CL Liew, RT Page, JR Walsh, P Dean, and R Coffin. 1998. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. J Amer Soc Hort Sci 123:463–469.

    CAS  Google Scholar 

  • Pratt HK and JD Goeschl. 1969. Physiological roles of ethylene in plants. Ann Rev Plant Physiol 20:541–584.

    Article  CAS  Google Scholar 

  • Reid MS. 1995. Ethylene in plant growth, development and senescence.In: PJ Davies (ed), Plant Hormones: Physiology, Biochemistry and Molecular Biology, Ed 2. Kluwer, Dordrecht, Netherlands. pp 486–508.

    Google Scholar 

  • Reid MS, and HK Pratt. 1972. Effects of ethylene on potato tuber respiration. Plant Physiol 49:252–255.

    PubMed  CAS  Google Scholar 

  • Rylski I, L Rappaport, and HK Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiol 53:658–662.

    PubMed  CAS  Google Scholar 

  • Schippers PA. 1976. The relationship between specific gravity and percentage dry matter in potato tubers. Am Potato J 53: 111–122.

    Article  Google Scholar 

  • Schwobe MA, and KL Parkin. 1990. Effect of low temperature and modified atmosphere storage on sugar accumulation in potatoes (Solanum tuberosum). J Food Proc Preserv 14:241–252.

    Article  CAS  Google Scholar 

  • Sieczka JB, and RE Thornton. 1992. Commercial Potato Production in North America. Potato Association of America, Orono, ME. pp 1–5, 45–46.

    Google Scholar 

  • Suttle JC. 2003. Auxin-induced sprout growth inhibition: role of endogenous ethylene. Amer J Potato Res 80:303–309.

    CAS  Google Scholar 

  • Timm H, DL Hughes, and ML Weaver. 1986. Effect of exposure time of ethylene on potato sprout development. Am Potato J 63:655–664.

    Article  Google Scholar 

  • van Es A, and KJ Hartmans. 1987a. Starch and sugars during tuberization, storage and sprouting.In: A Rastovski, A van Es, et al. (eds), Storage of Potatoes—Post-harvest Behavior, Store Design, Storage Practice, Handling. Pudoc, Wageningen, Netherlands. pp 79–113.

    Google Scholar 

  • van ES A and KJ Hartmans. 1987b. Dormancy, sprouting and sprout inhibition.In: A Rastovski, A van Es, et al. (eds), Storage of Potatoes—Post-harvest Behavior, Store Design, Storage Practice, Handling. Pudoc, Wageningen, Netherlands. pp 114–132.

    Google Scholar 

  • van Es A and KJ Hartmans. 1987c. Respiration.In: A Rastovski, A van Es, et al. (eds), Storage of Potatoes—Post-harvest Behavior, Store Design, Storage Practice, Handling. Pudoc, Wageningen, Netherlands. pp 132–140

    Google Scholar 

  • Wismer WV, AG Marangoni, and RY Yada. 1995. Low-temperature sweetening in roots and tubers. Hort Rev 17:203–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Daniels-Lake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels-Lake, B.J., Prange, R.K., Nowak, J. et al. Sprout development and processing quality changes in potato tubers stored under ethylene: 1. Effects of ethylene concentration. Am. J. Pot Res 82, 389–397 (2005). https://doi.org/10.1007/BF02871969

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02871969

Additional key words

Navigation