American Journal of Potato Research

, Volume 79, Issue 3, pp 211–218 | Cite as

Analyzing genotype by environment interaction in potato using yield-stability index

  • José M. Cotes
  • Carlos E. Ñustez
  • Ricardo Martinez
  • Nelson Estrada


The plant breeding program of the National University of Colombia carried out 10 potato regional trials during 1998 and 1999 to evaluate 15 promising potato clones (Solanum tuberosum ssp.andigena). Genotype by environment interaction was analyzed using Kang’s methodology, which links yield performance and phenotypic stability. A MACRO was implemented using the SAS system to obtain yield-stability indices. Shukla’s variance was estimated by restricted maximum likelihood (REML), which allowed handling unbalanced data for both genotypes and replicates. In addition, a multivariate analysis methodology was developed, based on the yield-stability index. This methodology is useful when tuber yield is categorized by size and quality, which is usual in Colombian potato harvests.

Additional Key Words

Regional Trials Phenotypic stability Restricted Maximum Likelihood 


El programa de mejoramiento en papa, liderado por la Universidad National de Colombia, estableció 10 pruebas regionales durante los años 1998 y 1999 para la evaluatión de 15 genotipos promisoriosde Solanum tuberosum ssp.andigena. Para el analisis e interpretation de la interaction genotipo por ambiente se utilizó la metodologia propuesta por Kang, la cual utiliza un estadístico que reúne la selection por rendimiento y estabilidad fenotipica. Una MACRO en el programa SAS fue implementada para la obtention del indice de rendimiento-estabilidad y la varianza de Shukla estimada por REML (Restricted Maximum Likelihood), la cual permite trabajar con datos desbalanceados tanto para repeticiones como genotipos. Además, se desarrolló una metodología que permitió el análisis multivariado, utilizando como base el índice de rendimiento-estabilidad, lo cual facilita el analisis del rendimiento cuando este se divide en varias categorias, como es el caso del cultivo de papa en Colombia.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Cooper, M., and I.H. DeLacy. 1994. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Gen 88: 561–572.CrossRefGoogle Scholar
  2. DeLacy, I.H., M. Cooper, and K.E. Basford. 1996. Relationships among analytical methods used to study genotype-by-environment interactions and evaluation of their impact on response to selection.In: Kang, M.S., and H.G. Gauch (eds), Genotype-by-Environment Interaction. CRC Press, New York. pp. 51–84.Google Scholar
  3. Harville, D.A. 1977. Maximum likelihood approaches to variance component estimation and related problems. J Am Stat Assoc 72: 320–340.CrossRefGoogle Scholar
  4. Huhn, M. 1996. Nonparametric analysis of genotype X environment interactions by ranks.In: Kang, M.S., and H.G. Gauch (eds), Genotype-by-Environment Interaction. CRC Press, New York. pp 235–271.Google Scholar
  5. Kang, M.S. 1988. A rank-sum method for selecting high yielding, stable crop genotypes. Cereal Res Comm 16: 113–115.Google Scholar
  6. Kang, M.S. 1991. Modified rank-sum method for selecting high yielding, stable crop genotypes. Cereal Res Comm 19: 361–364.Google Scholar
  7. Kang, M.S., and R. Magari. 1996. New development in selecting for phenotypic stability in crop breeding.In: Kang, M.S., and H.G. Gauch (eds), Genotype-by-Environment Interaction. CRC Press, New York. pp. 1–14.Google Scholar
  8. Kang, M.S., and H.N. Pham. 1991. Simultaneous selection for high yielding and stable crop genotypes. Agronomy J 83: 161–165.Google Scholar
  9. Magari, R., and M.S. Kang 1997. SAS-STABLE: Stability analyses of balanced and unbalanced data. Agronomy J 89: 929–932.Google Scholar
  10. Nassar, R., J. Leon, and M. Hühn. 1994. Test of significance for combined measures of plant stability and performance. Biometrical J 36: 109–123.CrossRefGoogle Scholar
  11. Piepho, H.P. 1995. Implication of correlations among some common stability statistics — a Monte Carlo simulations. Theor Appl Gen 90: 457–461.Google Scholar
  12. Piepho, H.P. 1996. Analysis of genotype-by-environment interaction and phenotypic stability.In: Kang, M.S., and H.G. Gauch (eds), Genotype-by-Environment Interaction. CRC Press, New York. pp. 152–174.Google Scholar
  13. Piepho, H.P. 1999. Stability analysis using the SAS system. Agronomy J 91: 154–160.Google Scholar
  14. Puri, M.L., and P.K. Sen. 1971. Nonparametric methods in multivariate analysis. John Wiley & Sons. New York.Google Scholar
  15. SAS Institute. 1996. SAS/STAT software. Changes and enhancements through realease 6.11. SAS. Inst., Cary, NC.Google Scholar
  16. Shukla, G.K 1972. Some statistical aspects of partitioning genotype-environment components of variability. Heredity 29: 237–245.PubMedGoogle Scholar
  17. Yates, F., and W.G. Cochran. 1938. The analysis of groups of experiment. J Ag Sci 28 556–580.CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • José M. Cotes
    • 1
  • Carlos E. Ñustez
    • 1
  • Ricardo Martinez
    • 1
  • Nelson Estrada
    • 1
  1. 1.Agronomy DepartmentNational University of ColombiaBogotáColombia A.A.

Personalised recommendations