American Journal of Potato Research

, Volume 81, Issue 4, pp 263–274 | Cite as

Molecular controls of tuberization

  • David J. Hannapel
  • Hao Chen
  • Faye M. Rosin
  • Anjan K. Banerjee
  • Peter J. Davies
Article

Abstract

Tuber formation in potatoes (Solanum tuberosum L.) is a complex developmental process involving a number of important biological systems. Under conditions of a short-day photoperiod and cool temperature, a transmissible signal is activated that initiates cell division and expansion and a change in the orientation of cell growth in the subapical region of the stolon tip. In this signal transduction pathway, perception of the appropriate environmental cues occurs in leaves and is mediated by phytochrome and gibberellins (GA). Phytohormones also play a prominent role in regulating the morphological events of tuberization activated in the stolon apex. GA, cytokinins, and jasmonate-like compounds have all been implicated in regulating tuber development. High levels of GA are correlated with the inhibition of tuberization, whereas low levels are associated with induction. Transcription factors are proteins that bind to DNA to regulate gene activity and, in some cases, to mediate hormone levels. Several of these DNA-binding proteins are involved in regulating plant growth and meristem development in potato, including tuber formation. One type, designated POTM1, regulates cytokinin levels in potato meristems and controls branching of axillary shoots. Two other types that physically interact, the BEL and KNOX proteins, mediate vegetative development. Transgenic plants that overexpressed BEL and KNOX proteins exhibited enhanced tuber formation even under long-day conditions. KNOX overexpressers exhibited abnormal leaf architecture and dwarfism. These transgenic lines exhibited a decrease in the levels of GA and an increase in cytokinin levels. In addition, the BEL transgenic lines grew more rapidly than wild-type plants. Our results indicate that DNA-binding proteins of potato mediate tuberization by enhancing or repressing the activity of specific target genes.

Additional Key Words

BEL1 Knottedl MADS box transcription factors 

Resumen

La formación de tubérculos en papa (Solanum tuberosum L.) es un proceso complejo de desarrollo que compromete diferentes sistemas biológicos importantes. Bajo condiciones de foto período corto y temperatura fría, se activa una señal transmisible en la región subapical del estolón que inicia la división celular y la expansión y cambio de orientatión del crecimiento de las células. En esta via de transducción se realiza la percepción de las señales medio-ambientales apropiadas en las hojas, lo cual se obtiene por mediación del fitocromo y las giberelinas (GA). Las fitohormonas también juegan un rol prominente, regulando los eventos morfológicos de tuberización activados en el ápice del estolón. Las GA, citoquininas y compuestos como el jasmonato han sido implicados en la regulacion del desarrollo del tubérculo. Los niveles altos de GA están correlacionados con la inhibición de la tuberización, mientras que los niveles bajos están asociados con la inducción. Los factores de trascripción son proteínas que se unen al ADN para regular la actividad de los genes y en algunos casos, para regular los niveles hormonales. Varias de estas ligaduras proteicas del ADN están involucradas en la regulacion del crecimiento de la planta y el desarrollo de los meristemos en papa, incluyendo la formación de tubérculos. Un tipo denominado POTM1, regula los niveles de citoquinina en los meristemos de papa y controla la ramificación de los brotes axilares. Otros dos tipos que interactúan físicamente son las proteínas BEL y KNOX que intervienen en el desarrollo vegetativo. Las plantas transgénicas con sobre-producción de proteínas BEL y KNOX incrementaron la formacion de tubérculos aún en condiciones de día largo. Las plantas que sobreexpresaron el KNOX exhibieron una arquitectura anormal en las hojas y enanismo. Estas líneas transgénicas mostraron una disminución en los niveles de AG y un aumento en los niveles de citoquininas. Además, las líneas transgénicas BEL crecieron con mayor rapidez que las plantas del tipo silvestre. Nuestros resultados indican que las proteínas que ligan el ADN de papa, intervienen en la tuberización, aumentando o disminuyendo la actividad de los genes objetivo específicos.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abu-Shaar M, DH Ryoo, and RS Mann. 1999. Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev 13:935–945.PubMedCrossRefGoogle Scholar
  2. Amador V, E Monte, JL Garcia-Martinez, and S Prat. 2001. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106:343–354.PubMedCrossRefGoogle Scholar
  3. Bachern CWB, RS van der Hoeven, SM de Bruijn, D Vreugdenhil, M Zabeau, and RGF Visser. 1996. Analysis of gene expression during potato tuber development. Plant J 9:745–753.CrossRefGoogle Scholar
  4. Barry GF, SG Rogers, RT Fraley, and L Brand. 1984. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780.PubMedCrossRefGoogle Scholar
  5. Batutis EJ, and EE Ewing. 1982. Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol 69:672–674.PubMedGoogle Scholar
  6. Bellaoui M, MS Pidkowich, A Samach, K Kushalappa, SE Kohalmi, Z Modrusan, WL Crosby, and GW Haughn. 2001. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13:2455–2470.PubMedCrossRefGoogle Scholar
  7. Berthelson J, C Kilstrup-Nielsen, F Blasi, F Mavilio, and V Zappavigna. 1999. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev 13:946–953.CrossRefGoogle Scholar
  8. Bürglin TR. 1997. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180.PubMedCrossRefGoogle Scholar
  9. Carrera E, SD Jackson, and S Prat. 1999. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript level in potato. Plant Physiol 119:765–773.PubMedCrossRefGoogle Scholar
  10. Carrera E, J Bou, JL Garcia-Martinez, and S Prat 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256.PubMedCrossRefGoogle Scholar
  11. Castro G, T Kraus, and G Abdala. 1999. Endogenous jasmonic acid and radial cell expansion in buds of potato tubers. J Plant Physiol 155:706–710.Google Scholar
  12. Chailakyan MK et al. 1981. Photoperiodism and tuber formation in grafting of tobacco on to potato. Dokl Akad Nauk SSSR 257:1276–1280.Google Scholar
  13. Chan RL, GM Gago, CM Palena, and DH Gonzalez. 1998. Homeoboxes in plant development. Biochim Biophys Acta 1442:1–19.PubMedGoogle Scholar
  14. Chen H, F Rosin, S Prat and DJ Hannapel. 2003. Interacting transcription factors from the TALE superclass regulate tuber formation. Plant Physiol 132:1391–1404.PubMedCrossRefGoogle Scholar
  15. Clark SE. 1997. Organ formation at the vegetative shoot meristem. Plant Cell 9:1067–1076.PubMedCrossRefGoogle Scholar
  16. Ewing EE, and PC Struik. 1992. Tuber formation in potato: induction, initiation and growth. Hort Rev 14:89–198.Google Scholar
  17. Fernie AR, and L Willmitzer. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiol 127:1459–1465.PubMedCrossRefGoogle Scholar
  18. Gális I, J Macas, J Vlasák, M Ondrej, and HA Van Onckelen. 1995. The effect of an elevated cytokinin level using theipt gene and N6-Benzyladenine on single node and intact potato plant tuberizationin vitro. J Plant Growth Regul 14:143–150.CrossRefGoogle Scholar
  19. Gardner HW. 1995. Biological roles and biochemistry of the lipoxygenase pathway. HortScience 30:197–204.Google Scholar
  20. Geigenberger P, M Hajirezaei, M Geiger, U Deiting, U Sonnewald, and M Stitt. 1998. Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205:428–437.PubMedCrossRefGoogle Scholar
  21. González-Schain N, S Prat and P Suárez-López. 2003. Isolation of a putative CONSTANS orthologue from potato. Abstract from Proc Int Soc Plant Mol Meeting, June 24, Barcelona.Google Scholar
  22. Guivarc’h A, J Rembur, M Goetz, T Roitsch, M Noin, T Schmulling, and D Chriqui. 2002. Local expression of theipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. J Exp Bot 53:621–629.PubMedCrossRefGoogle Scholar
  23. Hamberg M. 2000. New cyclopentenone fatty acids formed from linoleic and linolenic acids in potato. Lipids 35:353–363.PubMedCrossRefGoogle Scholar
  24. Hannapel DJ. 1991. Characterization of the early events of potato tuber development. Physiol Plant 83:568–573.CrossRefGoogle Scholar
  25. Hedden P, and Y Kamiya. 1997. Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460.PubMedCrossRefGoogle Scholar
  26. Hendriks T, D Vreugdenhil, and W Stiekema. 1991. Patatin and four serine protease inhibitor genes are differentially expressed during potato tuber development. Plant Mol Biol 17:385–394.PubMedCrossRefGoogle Scholar
  27. Jackson SD, A Heyer, J Dietze, and S Prat. 1996. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J 9:159–166.CrossRefGoogle Scholar
  28. Jackson SD, P James, S Prat, and B Thomas. 1998. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol 117:29–32.PubMedCrossRefGoogle Scholar
  29. Jackson SD, and S Prat. 1996. Control of tuberisation in potato by gibberellins and phytochrome B. Physiol Plant 98: 407–412.CrossRefGoogle Scholar
  30. Kang S-G, and DJ Hannapel. 1995. Nucleotide sequences of novel potato MADS-box cDNAs and their expression in vegetative organs. Gene 166:329–330.PubMedCrossRefGoogle Scholar
  31. Kerstetter R, E Vollbrecht, B Lowe, B Veit, J Yamaguchi, and S Hake. 1994. Sequence analysis and expression patterns divide the maizeknotted1- like homeobox genes into two classes. Plant Cell 6:1877–1887.PubMedCrossRefGoogle Scholar
  32. Kerstetter RA, and S Hake. 1997. Shoot meristem formation in vegetative development. Plant Cell 9:1001–1010.PubMedCrossRefGoogle Scholar
  33. Knoepfler PS, KR Calvo, H Chen, SE Antonarakis, and MP Kamps. 1997. Meisl and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci USA 94:14553–14558.PubMedCrossRefGoogle Scholar
  34. Koda Y, Y Kikuta, H Tazaki, Y Tsujino, S Sakamura, and T Yoshihara. 1991. Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry 30: 1435–1438.CrossRefGoogle Scholar
  35. Kolomiets MV, DJ Hannapel, H Chen, M Tymeson, and RJ Gladon. 2001. Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626.PubMedCrossRefGoogle Scholar
  36. Kumar D, and PF Wareing. 1973. Studies on tuberization inSolanum andigena. I. Evidence for the existence and movement of a specific tuberization stimulus. New Phytol 72: 283–287.CrossRefGoogle Scholar
  37. Li Y, G Hagen, and TJ Guilfoyle. 1992. Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395.PubMedCrossRefGoogle Scholar
  38. Macleod MR, HV Davies, SB Jarvis, and MA Taylor. 1999. Characterisation of genes isolated from a potato swelling stolon cDNA library. Pot Res 42:31–42.CrossRefGoogle Scholar
  39. Mann RS, and SK Chan. 1996. Extra specificity fromextradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends in Genet 12:258–262.CrossRefGoogle Scholar
  40. Martinez-Garcia JF, JL Garcia-Martinez, J Bou, and S Prat S. 2002a The Interaction of Gibberellins and Photoperiod in the Control of Potato Tuberization. J Plant Growth Regul 20:377–386.Google Scholar
  41. Martinez-Garcia JF, A Virgos-Soler, and S Prat. 2002b. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci USA 99:15211–15216.PubMedCrossRefGoogle Scholar
  42. Mignery G, CS Pikaard, DJ Hannapel, and WD Park. 1984. Isolation and sequence analysis of cDNAs for the major potato tuber protein, patatin. Nucleic Acid Res 12:7989–8000.Google Scholar
  43. Miyazawa Y, A Sakai, S Miyagishima, H Takano, S Kawano, and T Kuroiwa. 1999. Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured Bright Yellow-2 tobacco cells. Plant Physiol 121:461–469.PubMedCrossRefGoogle Scholar
  44. Müller J, Y Wang, R Frenzen, L Santi, F Salamini, and W Rohde. 2001. In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. Plant J 27:13–23.PubMedCrossRefGoogle Scholar
  45. Parnis A, O Cohen, T Gutfinger, D Hareven, D Zamir, and E Lifschitz. 1997. The dominant develomental mutants of tomato,Mouseear andCurl, are associated with distinct modes of abnormal transcriptional regulation of aknotted gene. Plant Cell 9:2143–2158.PubMedCrossRefGoogle Scholar
  46. Passner M, HD Ryoo, L Shen, RS Mann, and AK Aggarwal. 1999. Structure of DNA-bound Ultrabithorax-Exdradenticle homeodomain complex. Nature 397:714–719.PubMedCrossRefGoogle Scholar
  47. Pelacho AM, and AM Mingo-Castel. 1991. Jasmonic acid induces tuberization of potato stolons culturedin vitro. Plant Physiol 97:1253–1255.PubMedCrossRefGoogle Scholar
  48. Pinsonneault J, B Florence, H Vaessin, and W McGinnis. 1997. A model forextradenticle function as a switch that changes HOX proteins from repressors to activators. EMBO J 16:2032–2042.PubMedCrossRefGoogle Scholar
  49. Railton ID, and PF Wareing. 1973. Effects of daylength on endogenous gibberellins in leaves ofSolanum andigena. Physiol Plant 28:88–94.CrossRefGoogle Scholar
  50. Reiser L, P Sanchez-Baracaldo, and S Hake. 2000. Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol Biol 42:151–166.PubMedCrossRefGoogle Scholar
  51. Rieckhof GE, F Casares, HD Ryoo, M Abu-Shaar, and RS Mann. 1997. Nuclear translocation of Extradenticle requires homothorax, which encodes an Extradenticle-related homeodomain protein. Cell 91:171–183.PubMedCrossRefGoogle Scholar
  52. Romanov GA, NP Aksenova, TN Konstantinova, SA Golyanovskaya, J Kossmann, and L Willmitzer. 2000. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic Unes of potatoin vitro. Plant Growth Reg 32:245–251.CrossRefGoogle Scholar
  53. Rosin FM, JK Hart, HT Horner Jr, PJ Davies, and DJ Hannapel. 2003a. Overexpression of aknox gene of potato decreases GA accumulation and enhances tuber formation. Plant Physiol 132:106–117.PubMedCrossRefGoogle Scholar
  54. Rosin, FM, JK Hart, H Van Onckelen, and DJ Hannapel. 2003b. Suppression of a vegetative MADS box gene of potato activates axillary meristem development. Plant Physiol 131:1613–1622.PubMedCrossRefGoogle Scholar
  55. Royo J, J Leon, G Vancanneyt, JP Albar, S Rosahl, F Ortego, P Castanera, and JJ Sanchez-Serrano. 1999. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA 96:1146–1151.PubMedCrossRefGoogle Scholar
  56. Royo J, G Vancanneyt, AG Perez, C Sanz, K Stormann, S Rosahl, and JJ Sanchez-Serrano. 1996. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organspecific and wound-regulated expression patterns. J Biol Chem 271:21012–21019.PubMedCrossRefGoogle Scholar
  57. Ryoo HD, T Marty, F Casares, M Affolter, and RS Mann. 1999. Regulation of Hox target genes by a DNA bound Homothorax/Hox/ Extradenticle complex. Development 126:5137–5148.PubMedGoogle Scholar
  58. Sergeeva LI, SM de Bruijn, EAM Koot-Gronsveld, O Navratil, and D Vreugdenhil. 2000. Tuber morphology and starch accumulation are independent phenomena: Evidence fromipt-transgenic potato lines. Physiol Plant 108:435–443.CrossRefGoogle Scholar
  59. Smith HM, I Boschke, and S Hake. 2002. Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584.PubMedCrossRefGoogle Scholar
  60. Suh SG, WJ Stiekema, and DJ Hannapel. 1991. Proteinase-inhibitor activity and wound-inducible expression of the 22-kDa potatotuber proteins. Planta 184:423–430.CrossRefGoogle Scholar
  61. Takahashi K, K Fujino, Y Kikuta, and Y Koda. 1994. Expansion of potato cells in response to jasmonic acid. Plant Sci 100:3–8.CrossRefGoogle Scholar
  62. Tamaoki M, S Kusaba, Y Kano-Murakami, and M Matsuoka. 1997. Ectopic expression of a tobacco homeobox gene,NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol 38:917–927.PubMedGoogle Scholar
  63. Tamaoki M, A Nishimura, M Aida, M Tasaka, and M Matsuoka. 1999. Transgenic tobacco over-expressing a homeobox gene shows a developmental interaction between leaf morphogenesis and phyllotaxy. Plant Cell Physiol 40:657–667.PubMedGoogle Scholar
  64. Tanaka-Ueguchi M, H Itoh, N Oyama, M Koshioka, and M Matsuoka. 1998. Overexpression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. Plant J 15:391–400.PubMedCrossRefGoogle Scholar
  65. Tauberger E, AR Fernie, M Emmermann, A Renz, J Kossmann, L Willmitzer, and RN Trethewey. 2000. Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J 23:43–53.PubMedCrossRefGoogle Scholar
  66. Theißen G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85.PubMedCrossRefGoogle Scholar
  67. Van den Berg JH, I Simko, PJ Davies, EE Ewing, and A Halinska. 1995. Morphology and (14C)gibbereUm A-12 metabolism in wild-type and dwarfSolanum tuberosum ssp.andigena grown under long and short photoperiods. J Plant Physiol 146:467–473.Google Scholar
  68. Viola R, AG Roberts, S Haupt, S Gazzani, RD Hancock, N Marmiroli, GC Machray, and KJ Oparka. 2001. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13: 385–398.PubMedCrossRefGoogle Scholar
  69. Vreugdenhil D, X Xu, CS Jung, AAM van Lammeren, and EE Ewing. 1999. Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.) cuttings: A re-evaluation. Ann Bot 84:675–680.CrossRefGoogle Scholar
  70. Weigel D, and EM Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78:203–209.PubMedCrossRefGoogle Scholar
  71. Xu X, D Vreugdenhil, and AAM van Lammeren. 1998a. Cell division and cell enlargement during potato tuber formation. J Expt Bot 49:573–582.CrossRefGoogle Scholar
  72. Xu X, AAM van Lammeren, E Vermeer, and D Vreugdenhil. 1998b. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formationin vitro. Plant Physiol 117:575–584.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • David J. Hannapel
    • 1
  • Hao Chen
    • 1
  • Faye M. Rosin
    • 1
  • Anjan K. Banerjee
    • 1
  • Peter J. Davies
    • 2
  1. 1.Dept. of Horticulture and Interdepartmental Plant Physiology MajorIowa State UniversityAmes
  2. 2.Dept. of Plant BiologyCornell UniversityIthaca

Personalised recommendations