Skip to main content
Log in

Coupled morphological and thin film instabilities generated by inclusions in crystal growth

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

The interaction of a foreign particle that is suspended in the melt with a planar solidifying interface may induce the onset of morphological instabilities provided that its distance from the interface falls below a critical value. This distance, which is of the order of the particle’s radius, depends on the governing processing and physical parameters. When the particle is in nearcontact with the solid-liquid interface, the disjoining pressure in the melt film that separates the particle from the interface influences the interaction. We derive an expression for the film thickness at which rupture occurs. The critical film thickness, which depicts the competition between the stabilizing influence of surface tension and thermal gradients and the destabilizing influence of the intermolecular forces, varies as (Sh)1/4, where Sh is the Scheludko number that is modifed by the imposed thermal gradients. We note the existence of a critical value for the particle’s radius below which the stabilizing effects are primarily due to surface tension and above which they are due to the thermal gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Jackson andB. Chalmers, J. Appl. Phys. 29, 1178 (1958).

    Article  Google Scholar 

  2. D.R. Uhlmann, B. Chalmers andK.A. Jackson, J. Appl. Phys. 35, 2986 (1964).

    Article  Google Scholar 

  3. A.A. Chernov andD.E. Temkin, in Current Topics in Materials Science (ed. E. Kaldis and H.J. Scheel), vol. 2, pp. 3–77. North Holland Publishing Co. (1977).

    Google Scholar 

  4. D. Li andA.W. Neumann, in Applied Surface Thermodynamics (ed. A.W. Neumann and J.K. Spelt), vol. 63, pp. 557–629. New-York: Dekker (1996).

    Google Scholar 

  5. H. Ishiguro andB. Rubinsky, Cryobiology 31, 483 (1994).

    Article  Google Scholar 

  6. A. Endo, H.S. Chauhan, T. Egi andY. Shiohara, J. Mater. Sci. 11, 795 (2002).

    Google Scholar 

  7. G. Gay andM.A. Azouni, Crystal Growth & Design, 2, 135 (2002).

    Article  Google Scholar 

  8. A.R. Kennedy andT.W. Clyne, Cast Metals 4, 160 (1991).

    Google Scholar 

  9. A.M. Zubko, V.G. Lobanov andV.V. Nikonova, Sov. Phys. Crystallgr. 18, 239 (1973).

    Google Scholar 

  10. A.A. Chernov, D.E. Temkin andA.M. Mel’kinova, Sov. Phys. Crystallogr. 22 656–658 (1977).

    Google Scholar 

  11. S. Sen, W.F. Faukler, P. Curreri and D.M. Stefanescu, Met. Trans. A 28, 2129 (1997).

    Google Scholar 

  12. L. Hadji, Phys. Rev. E 64, 051502 (2001).

    Google Scholar 

  13. S. Ahuja, Ph.D. Dissertation, The University of Alabama (1992).

  14. L. Hadji, Scripta Materialia 48, 665 (2003).

    Article  Google Scholar 

  15. L. Hadji, Eur. Phys. J. B 37, 85–89 (2004).

    Google Scholar 

  16. A.A. Chernov, D.E. Temkin andA.M. Mel’kinova, Sov. Phys. Crystallogr. 21, 369 (1976).

    Google Scholar 

  17. H.S. Carslaw andJ.C. Jaeger, Conduction of Heat in Solids, second edition (Clarendon Press, Oxford, 1959).

    Google Scholar 

  18. H. Cheng andL. Greengard, SIAM J. Appl. Math., 58, pp. 122–141 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  19. D. M. Stefanescu, R.V. Phalnikar, H. Pang, S. Ahuja, andB. K. Dhindaw, SIJ Int. 35, 300 (1995).

    Google Scholar 

  20. A.D. Poularikas, The Transforms and Applications Handbook, second edition (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  21. R.F. Sekerka, J. Crystal Growth 10, 239 (1971).

    Article  Google Scholar 

  22. S.R. Coriell andR.F. Sekerka, J. Crystal Growth 19, 90–104 (1972).

    Article  Google Scholar 

  23. C.M. Mate, J. Appl. Phys. 48, 665–669 (1992).

    Google Scholar 

  24. S. Miyazawa, J. Crystal Growth 49, 515–521 (1980).

    Article  Google Scholar 

  25. D. Shangguan andD.M. Stefanescu, Met. Trans. B 22, 383–388 (1991).

    Google Scholar 

  26. A. Scheludko, Adv. Coll. Int. Sci. 1, 391 (1967).

    Article  Google Scholar 

  27. A.K. Malhotra andD.T. Wassan. Chem. Eng. Commun. 48, 35 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layachi Hadji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadji, L. Coupled morphological and thin film instabilities generated by inclusions in crystal growth. Microgravity Sci. Technol 17, 9–17 (2005). https://doi.org/10.1007/BF02870974

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870974

Keywords

Navigation