Skip to main content
Log in

Numerical simulations of convection induced by Korteweg stresses in miscible polymermonomer systems

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

We modeled a miscible polymer-monomer system with a sharp transition zone separating the two fluids to determine if convection analogous to Marangoni convection in immiscible fluids could occur because of thermal and concentration gradients. We considered three cases: with a temperature gradient along the transition zone, with a variable transition zone width, and one with a gradient in the conversion of polymerization. Using the Navier-Stokes equations with an additional term, the Korteweg stress term arising from non-local interactions in the fluid, we demonstrated with realistic parameters that measurable fluid flow would result in the absence of buoyancy-driven convection for all three cases. To avoid buoyancy-driven convection, the experiment would have to be performed in microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrach, S.: Low-Gravity Fluid Flows. Annu. Rev. Fluid Mech. vol. 14, p. 313 (1982)

    Article  Google Scholar 

  2. Antonovskii, L. K.: A Phase Field Model of Capillarity. Phys. Fluids vol. 7, p. 747 (1995)

    Article  MathSciNet  Google Scholar 

  3. Schwabe, D.: The Bénard-Marangoni-Instability in Small Circular Containers under Microgravity: Experimental Results. Adv. Space Res. vol. 24, p. 1347 (1999)

    Article  MathSciNet  Google Scholar 

  4. Jasnow, D., Viñals, J.: Course-Grained Description of Thermo-capillary Flows. Phys. Fluids vol. 8, p. 660 (1996)

    Article  MATH  Google Scholar 

  5. Kamotani, Y., Ostrach, S.: Analysis of Velocity data taken in Surface Tension Driven Convection Experiment in Microgravity. Phys. Fluids vol. 6, p. 3601 (1994)

    Article  Google Scholar 

  6. Korteweg, D. J.: Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais coninues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises des Sciences Exactes et Naturelles vol. 6, p. 1 (1901)

    Google Scholar 

  7. Joseph, D. D., Renardy, Y. Y.: Fundamentals of Two-Fluid Dynamics. Part II. Lubricated Transport, Drops and Miscible Fluids. Springer, New York (1992)

    Google Scholar 

  8. Liao, T. Y., Joseph, D. D.: Sidewall Effects in the Smoothing of an Initial Discontinuity of Concentration. J. Fluid Mech. vol. 342, p. 37 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Joseph, D. D., Huang, A., Hu, H.: Non-Solenoidal Velocity Effects and Korteweg Stresses in Simple Mixtures of Incompressible Fluids. Physica D vol. 97, p. 104 (1996)

    Article  Google Scholar 

  10. Chen, C.-Y., Meiburg, E.: Miscible displacements in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. vol. 326, p. 57 (1996)

    Article  MATH  Google Scholar 

  11. Chen, C.-Y., Wang, L., Meiburg, E.: Miscible Droplets in a Porous Medium and the Effect of Korteweg Stresses. Phys. Fluids vol. 13, p. 2447 (2001)

    Article  Google Scholar 

  12. Chen, C.-Y., Meiburg, E.: Miscible displacements in capillary tubes: Influence of Korteweg stresses and divergence effects. Phys. Fluids vol. 14, p. 2052 (2003)

    Article  Google Scholar 

  13. Meiburg, E., Chen, C.-Y., Wang, L.-L.: The Dynamics of Miscible Interfaces and the Effects of Korteweg Stresses. Trans. Aero. Astro. Soc. R. O. C. vol. 33, p. 7 (2001)

    Google Scholar 

  14. Lowengrub, J., Truskinovsky, L.: Cahn-Hilliard Fluids and Topological Transitions. Proc. Roy. Soc. London A vol. p. (1997)

  15. Volpert, V. A., Pojman, J. A., Texier-Picard, R.: Convection Induced by Composition Gradients in Miscible Systems. C. R. Mecanique vol. 330, p. 353 (2002)

    Article  MATH  Google Scholar 

  16. Bessonov, N., Pojman, J. A., Volpert, V.: Modelling of Diffuse Interfaces with Temperature Gradients. J. Engineering Math. vol. 49, p. 321 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cahn, J. W., Hilliard, J. E.: Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. vol. 28, p. 258 (1958)

    Article  Google Scholar 

  18. Zeldovich, Y. B.: About Surface Tension of a Boundary between two Mutually Soluble Liquids. Zhur. Fiz. Khim. (in Russian) vol. 23, p. 931 (1949)

    Google Scholar 

  19. Rousar, I., Nauman, E. B.: A Continuum Analysis of Surface Tension in Nonequilibrium Systems. Chem. Eng. Comm. vol. 129, p. 19 (1994)

    Article  Google Scholar 

  20. Bessonov, N. M., Song, D. J.: Application of Vector Calculus to Numerical Solutions of Continuum Mechanics Problems. J. Comp. Phys. vol. 167, p. 22 (2001)

    Article  MATH  Google Scholar 

  21. Balsara, N. P., Nauman, E. B.: The Entropy of Inhomogeneous Polymer-Solvent Systems. J. Poly. Sci.: Part B. Poly. Phys. vol. 26, p. 1077 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Pojman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessonov, N., Volpert, V.A., Pojman, J.A. et al. Numerical simulations of convection induced by Korteweg stresses in miscible polymermonomer systems. Microgravity Sci. Technol 17, 8–12 (2005). https://doi.org/10.1007/BF02870969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870969

Keywords

Navigation