Skip to main content
Log in

On the experimental analysis of the linear dynamics of slender axisymmetric liquid bridges

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

There have been many theoretical analyses of the linear dynamics of liquid bridges using both analytical and numerical approaches. Experimental studies have been far fewer, probably due to the technical difficulties involved. In this paper, a procedure to perform experiments dealing with the linear dynamics of slender axisymmetric liquid bridges is discussed. This procedure allows one to study the response of the liquid bridge to a time-dependent microgravity field without knowing previously the surface tension associated with the interface and the viscosity of the fluid. In fact, the values of these quantities are determined in the course of the experiment, which can be regarded as an effective way to measure them. The measurement of the surface tension and viscosity is illustrated by replacing the experimental data with a numerical simulation. More precisely, the solution of the Cosserat model is perturbed by introducing a random function to simulate the experimental data. In this way, one can easily analyse the influence of technical aspects on the results; for instance, the number of images taken per unit time and their resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meseguer, J., Perales, J. M., Martínez, I., Bezdenejnykh, N. A., Sanz, A.: Hydrostatic Instabilities in Floating Zone Crystal Growth Process, Crystal Growth Res., vol. 5, p. 27 (1999).

    Google Scholar 

  2. Tsamopoulos, J., Chen, T., Borkar, A.: Viscous Oscillations of Capillary Bridges, J. Fluid Mech., vol. 235, p. 579 (1992).

    Article  MATH  Google Scholar 

  3. Higuera, M., Nicolás, J. A., Vega, J. M.: Linear Oscillations of Weakly Dissipative Axisymmetric Liquid Bridges, Phys. Fluids, vol. 6, p. 438 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. Nicolás, J. A., Vega, J. M.: Linear Oscillations of Axisymmetric Viscous Liquid Bridges, Z. Angew. Math. Phys., vol. 51, p. 701 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. Montanero, J. M.: Linear Dynamics of Axisymmetric Liquid Bridges, E. J. Mech. B/Fluids, vol. 22, p. 169 (2003).

    MathSciNet  Google Scholar 

  6. Perales, J. M., Meseguer, J.: Theoretical and Experimental Study of the Vibration of Axisymmetric Viscous Liquid Bridges, Phys. Fluids A, vol. 4, p. 1110 (1992).

    Article  Google Scholar 

  7. Nicolás, J. A., Rivas, D., Vega, J. M.: On the Steady Streaming Flow due to High-Frequency Vibration in Nearly Inviscid Liquid Bridges, J. F. Mech., vol. 354, p. 147 (1998).

    Article  MATH  Google Scholar 

  8. Meseguer, J., Perales, J. M.: A Linear Analysis ofg-Jitter Effects on Viscous Cylindrical Liquid Bridges, Phys. Fluids A, vol. 3, p. 2332 (1991).

    Article  MATH  Google Scholar 

  9. Meseguer, J., Perales, J. M., Bezdenejnykh, N. A.: A Theoretical Approach to Impulsive Motion of Viscous Liquid Bridges, Microgravity Q., vol. 1, p. 215 (1991).

    Google Scholar 

  10. Ahrens, S., Falk, F., Großbach, R., Langbein, D.: Experiments on Oscillations of Small Liquid Bridges, Microgravity Sci. Tech., vol VII/I, p. 2 (1994).

    Google Scholar 

  11. Langbein, D., Falk, F., Großbach, R.: Oscillations of Liquid Columns under Microgravity, Adv. Space Res., vol. 16, p. 23 (1995).

    Article  Google Scholar 

  12. Morse, S. F., Thiessen, D. B., Martson, P. L.: Capillary Bridge Modes Driven with Modulated Ultrasonic Radiation Pressure, Phys. Fluids, vol. 8, p. 3 (1996).

    Article  Google Scholar 

  13. Sanz, A.: The Influence of the Outer Bath in the Dynamics of Axisymmetric Liquid Bridges, J. Fluid Mech., vol. 156, p. 101 (1985).

    Article  MATH  Google Scholar 

  14. Sanz, A., Díez J. L.: Non-Axisymmetric Oscillations of Liquid Bridges, J. Fluid Mech., vol. 205, p. 503 (1989).

    Article  Google Scholar 

  15. Montanero, J. M., Cabezas, G., Acero, J., Perales, J. M.: Theoretical and Experimental Analysis of the Equilibrium Contours of Liquid Bridges of Arbitrary Shape, Phys. Fluids, vol. 14, p. 682 (2002).

    Article  MathSciNet  Google Scholar 

  16. Ganán-Calvo, A. M.: Oscillations of Liquid Captive Rotating Drops, J. Fluid Mech., vol. 226, p. 63 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. Cabezas, M. G., Montanero, J. M., Acero, J., Jaramillo, M. A., Fernández, J. A.: Detection of the Liquid Bridge Contour and its Applications, Meas. Sci. Technol., vol. 13, p. 829 (2002).

    Article  Google Scholar 

  18. García, F. J., Castellanos, A.: One-Dimensional Models for Slender Axisymmetric Viscous Liquid Jets, Phys. Fluids, vol. 6, p. 2676 (1994).

    Article  MATH  Google Scholar 

  19. García, F. J., Castellanos, A.: One-Dimensional Models for Slender Axisymmetric Viscous Liquid Bridges, Phys. Fluids, vol. 8, p. 2837 (1996).

    Article  MATH  Google Scholar 

  20. Montanero, J. M., Acero, J.: A Note on the Use of One-Dimensional Models to Describe the Linear Dynamics of Liquid Bridges, E. J. Mech. B/Fluids, in press.

  21. Espino, J. L., Meseguer, J., Laverón-Simavilla, A: An Experimental Study of Liquid Bridges at Stability Limit of Minimum Volume, Phys. Fluids, vol. 14, p. 3710 (2002).

    Article  Google Scholar 

  22. The value ofs given in (13) and in (17b) of Ref. [5] do not coincide due to a typographical error in the latter.

    MathSciNet  Google Scholar 

  23. Cabezas, M. G., Montanero, J. M.: On the Use of Liquid Bridges as Tensiometers, J. of Computational Methods in Sciences and Engineering, vol. 4, p. 75 (2004).

    MATH  Google Scholar 

  24. Rotenberg, Y., Boruvka, L., Neumann, A. W.: Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces, J. Colloid Interface Sci., vol. 93, p.169 (1983).

    Article  Google Scholar 

  25. Río, O. I., Neumann, A. W.: Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops, J. Colloid Interface Sci., vol. 196, p. 136 (1997).

    Article  Google Scholar 

  26. Bates, D. M., Watts, D. G.: Nonlinear Regression Analysis and its Applications. John Wiley & Sons, New York (1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanero, J.M. On the experimental analysis of the linear dynamics of slender axisymmetric liquid bridges. Microgravity Sci. Technol 15, 3–11 (2004). https://doi.org/10.1007/BF02870964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870964

Keywords

Navigation