Abstract
There have been many theoretical analyses of the linear dynamics of liquid bridges using both analytical and numerical approaches. Experimental studies have been far fewer, probably due to the technical difficulties involved. In this paper, a procedure to perform experiments dealing with the linear dynamics of slender axisymmetric liquid bridges is discussed. This procedure allows one to study the response of the liquid bridge to a time-dependent microgravity field without knowing previously the surface tension associated with the interface and the viscosity of the fluid. In fact, the values of these quantities are determined in the course of the experiment, which can be regarded as an effective way to measure them. The measurement of the surface tension and viscosity is illustrated by replacing the experimental data with a numerical simulation. More precisely, the solution of the Cosserat model is perturbed by introducing a random function to simulate the experimental data. In this way, one can easily analyse the influence of technical aspects on the results; for instance, the number of images taken per unit time and their resolution.
Similar content being viewed by others
References
Meseguer, J., Perales, J. M., Martínez, I., Bezdenejnykh, N. A., Sanz, A.: Hydrostatic Instabilities in Floating Zone Crystal Growth Process, Crystal Growth Res., vol. 5, p. 27 (1999).
Tsamopoulos, J., Chen, T., Borkar, A.: Viscous Oscillations of Capillary Bridges, J. Fluid Mech., vol. 235, p. 579 (1992).
Higuera, M., Nicolás, J. A., Vega, J. M.: Linear Oscillations of Weakly Dissipative Axisymmetric Liquid Bridges, Phys. Fluids, vol. 6, p. 438 (1994).
Nicolás, J. A., Vega, J. M.: Linear Oscillations of Axisymmetric Viscous Liquid Bridges, Z. Angew. Math. Phys., vol. 51, p. 701 (2000).
Montanero, J. M.: Linear Dynamics of Axisymmetric Liquid Bridges, E. J. Mech. B/Fluids, vol. 22, p. 169 (2003).
Perales, J. M., Meseguer, J.: Theoretical and Experimental Study of the Vibration of Axisymmetric Viscous Liquid Bridges, Phys. Fluids A, vol. 4, p. 1110 (1992).
Nicolás, J. A., Rivas, D., Vega, J. M.: On the Steady Streaming Flow due to High-Frequency Vibration in Nearly Inviscid Liquid Bridges, J. F. Mech., vol. 354, p. 147 (1998).
Meseguer, J., Perales, J. M.: A Linear Analysis ofg-Jitter Effects on Viscous Cylindrical Liquid Bridges, Phys. Fluids A, vol. 3, p. 2332 (1991).
Meseguer, J., Perales, J. M., Bezdenejnykh, N. A.: A Theoretical Approach to Impulsive Motion of Viscous Liquid Bridges, Microgravity Q., vol. 1, p. 215 (1991).
Ahrens, S., Falk, F., Großbach, R., Langbein, D.: Experiments on Oscillations of Small Liquid Bridges, Microgravity Sci. Tech., vol VII/I, p. 2 (1994).
Langbein, D., Falk, F., Großbach, R.: Oscillations of Liquid Columns under Microgravity, Adv. Space Res., vol. 16, p. 23 (1995).
Morse, S. F., Thiessen, D. B., Martson, P. L.: Capillary Bridge Modes Driven with Modulated Ultrasonic Radiation Pressure, Phys. Fluids, vol. 8, p. 3 (1996).
Sanz, A.: The Influence of the Outer Bath in the Dynamics of Axisymmetric Liquid Bridges, J. Fluid Mech., vol. 156, p. 101 (1985).
Sanz, A., Díez J. L.: Non-Axisymmetric Oscillations of Liquid Bridges, J. Fluid Mech., vol. 205, p. 503 (1989).
Montanero, J. M., Cabezas, G., Acero, J., Perales, J. M.: Theoretical and Experimental Analysis of the Equilibrium Contours of Liquid Bridges of Arbitrary Shape, Phys. Fluids, vol. 14, p. 682 (2002).
Ganán-Calvo, A. M.: Oscillations of Liquid Captive Rotating Drops, J. Fluid Mech., vol. 226, p. 63 (1991).
Cabezas, M. G., Montanero, J. M., Acero, J., Jaramillo, M. A., Fernández, J. A.: Detection of the Liquid Bridge Contour and its Applications, Meas. Sci. Technol., vol. 13, p. 829 (2002).
García, F. J., Castellanos, A.: One-Dimensional Models for Slender Axisymmetric Viscous Liquid Jets, Phys. Fluids, vol. 6, p. 2676 (1994).
García, F. J., Castellanos, A.: One-Dimensional Models for Slender Axisymmetric Viscous Liquid Bridges, Phys. Fluids, vol. 8, p. 2837 (1996).
Montanero, J. M., Acero, J.: A Note on the Use of One-Dimensional Models to Describe the Linear Dynamics of Liquid Bridges, E. J. Mech. B/Fluids, in press.
Espino, J. L., Meseguer, J., Laverón-Simavilla, A: An Experimental Study of Liquid Bridges at Stability Limit of Minimum Volume, Phys. Fluids, vol. 14, p. 3710 (2002).
The value ofs given in (13) and in (17b) of Ref. [5] do not coincide due to a typographical error in the latter.
Cabezas, M. G., Montanero, J. M.: On the Use of Liquid Bridges as Tensiometers, J. of Computational Methods in Sciences and Engineering, vol. 4, p. 75 (2004).
Rotenberg, Y., Boruvka, L., Neumann, A. W.: Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces, J. Colloid Interface Sci., vol. 93, p.169 (1983).
Río, O. I., Neumann, A. W.: Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops, J. Colloid Interface Sci., vol. 196, p. 136 (1997).
Bates, D. M., Watts, D. G.: Nonlinear Regression Analysis and its Applications. John Wiley & Sons, New York (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Montanero, J.M. On the experimental analysis of the linear dynamics of slender axisymmetric liquid bridges. Microgravity Sci. Technol 15, 3–11 (2004). https://doi.org/10.1007/BF02870964
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02870964