Skip to main content
Log in

Floating zones heated around the equatorial plane: models and simulations

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

The work presents a discussion of the floating-zone (FZ) problem in terms of fundamental concepts and simulations as well as some prototype applications. New results are included along with a compilation of published material. Working engineering models and generalised correlations are developed, while providing a rigorous framework for deeper understanding and effective treatment of relevant phenomena encountered in the FZ process. The difference between the "half-zone" and the "full-zone" and the related possibility to use one or the other configuration to capture the FZ fundamental hydrodynamics are elucidated. The attention is focused on microgravity fluiddynamic aspects since high-quality material processing is expected to be enabled in the space environment. Moreover, since most of the available experimental data come from onground experimentation, some effort is spent to elucidate the behaviour of the liquid zone under normal gravity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6.|References

  1. Eyer A., Leiste H., Nitsche R., "Crystal Growth Of Silicon On Spacelab 1, Experiment ES-321", In ESA European Symposium on Material Science Under Microgravity, Results of Spacelab 1, Schloss Elmau, November 5–7, 1984, ESA SP-222, p. 173.

  2. Muller G., "Convection and inhomogeneities in crystal growth from the melt, in H. C: Freyhard (Ed.), Crystals: Growth, Properties and Applications 12, Springer, Berlin, (1988).

    Google Scholar 

  3. Benz K. W., "Factors controlling crystal perfections during growth under microgravity", Proceedings VIIth European Symposium on Materials and Fluid Sciences in Microgravity Oxford (United Kingdom), 10/15 September, ESA SP 295, p. 59, (1990).

  4. Cröll A., Muller-Sebert W., Nitsche R., "Transition from Steady to time-dependent Marangoni convection in parti ally coated Silicon melt zones", Proc. 7th Europ Symp. On Materials and Fluid Sciences in Microgravity, ESA SP-295, p. 263 (1990).

  5. Chun C.H., Wuest W., "Experiments on the transition from the steady to the oscillatory Marangoni convection of a floating zone under reduced gravity effect", Acta Astronautica, Vol. 6, p. 1073, (1979).

    Article  Google Scholar 

  6. Preisser F., Schwabe D., Scharmann A., "Steady and oscillatory thermocapillary convection il liquid columns with free cylindrical surface", J.Fluid Mech., Vol. 126, p. 545, (1983).

    Article  Google Scholar 

  7. Velten R., Schwabe D., Scharmann A., "The periodic instability of thermocapillary convection in cylindrical liquid bridges", Phys. Fluids A Vol. 3, p. 267, (1991).

    Article  Google Scholar 

  8. Frank S., Schwabe D., "Temporal and spatial elements of thermocapillary convection in floating zones", Experiments in Fluids, Vol. 23, p. 234, (1998).

    Article  Google Scholar 

  9. Kuhlmann H.C., Rath H.J., "Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges", J. Fluid Mech., Vol. 247, p. 247, (1993).

    Article  MATH  Google Scholar 

  10. Wanschura M., Shevtsova V., Kuhlmann H.C., Rath H.J., “Convective instability mechanism in thermocapillary liquid bridges“, Phys. Fluids, Vol. 5, p. 912, (1995).

    Article  Google Scholar 

  11. Smith M.K., Davis S.H., "Instabilities of dynamic ther mocapillary liquid layers. Part 1: convective instabilities", J.Fluid Mech Vol. 132, p. 119, (1983).

    Article  MATH  Google Scholar 

  12. Lappa M., Savino R. andMonti R., "Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: influence of geometrical aspect ratio"; Int. J. Num. Meth. Fluids, Vol. 36 (1), 53, (2001).

    Article  MATH  Google Scholar 

  13. Shevtsova V.M., Melnikov D.E. andLegros J.C., "Multistability of oscillatory thermocapillary convection in a liquid bridge", Phys. Rev. E, Vol. 68 (6), p. 066311, (2003).

    Article  Google Scholar 

  14. Hu W.R. andTang Z.M., "Influence of liquid bridge volume on the floating zone convection", Cryst. Res. Technol., Vol. 38 (7–8), p. 627, (2003).

    Article  Google Scholar 

  15. Rupp R., Muller G., Neumann G., "Three dimensional time dependent modelling of the Marangoni convection in zone melting configurations for GaAs", Journal of Crystal growth, Vol. 97, p. 34, (1989).

    Article  Google Scholar 

  16. Levenstam M., Amberg G., "Hydrodynamical instabilities of thermocapillary flow in a halfzone", J. Fluid Mech., Vol. 297, p. 357, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. Lappa M., Savino R., "3D analysis of crystal/melt interface shape and Marangoni flow instability in solidifying liquid bridges", Journal of Computational Physics, Vol. 180, p. 751, (2002).

    Article  Google Scholar 

  18. Imaishi N., Yasuhiro S., Akiyama Y., Yoda S., "Numerical simulation of oscillatory Marangoni flow in halfzone liquid bridge of low Prandtl number fluid"; J. Crystal Growth, Vol. 230, p.164, (2001).

    Article  Google Scholar 

  19. Lappa M., Savino R. andMonti R., "Three-dimensional numerical simulation of Marangoni instabilities in non-cylindrical liquid bridges in microgravity"; Int. J. of Heat and Mass Transfer, Vol. 44, No. 10, p. 1983, (2001).

    Article  MATH  Google Scholar 

  20. Chen Q.S., Hu W.R., Prasad V., “Effect of liquid bridge volume on the instability in small-Prandtl-number half zones”, J.Cryst. Growth, Vol. 203, p. 261, (1999).

    Article  Google Scholar 

  21. Nienhüser Ch., Kuhlmann H. C., "Stability of thermocapillary flows in non-cylindrical liquid bridges", J. Fluid Mech., Vol. 458, p. 35, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. Lappa M., Yasushiro S., Imaishi N., "3D numerical simulation of on ground Marangoni flow instabilities in liquid bridges of low Prandtl number fluid", Int. J. Num. Meth. Heat Fluid Flow, Vol. 13 (3), p. 309, (2003).

    Article  MATH  Google Scholar 

  23. Baumgartl J., Gewald M., Rupp R., Stierlen J., Muller G., "The use of magnetic fields and microgravity in melt growth of semiconductors: a comparative study", Proceedings VIIth European Symposium on Materials and Fluid Sciences in Microgravity Oxford (United Kingdom) (1990), 10/15 September, ESA SP 295

  24. Cröll A., Kaiser Th., Schweizer M., Danilewsky A.N., Lauer S., Tegetmeier A., Benz K. W., “Floating-zone and floating-solution-zone growth of GaSb under microgra vity”, J. Cryst. Growth, Vol. 191, p. 365, (1998).

    Article  Google Scholar 

  25. Levenstam M., Amberg G., Carlberg T., Andersson M., “Experimental and numerical studies of thermocapillary convection in a floating zone like configuration”, J. Cryst. Growth, Vol. 158, p. 224, (1996).

    Article  Google Scholar 

  26. Lan C.W., Chian C.H., “Three-dimensional simulation of Marangoni flow and interfaces in floating-zone crystal growth”, Third International Workshop on Modelling in Crystal Growth, October 18–20, 2000, Hauppauhe, New York, Usa

  27. Camel D., Tison P., Carlberg T., "Floating zone crystal growth of Germanium", Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission D2, Editors P.R. Sahm, M.H. Keller, B. Schiewe, p. 494, (1995).

  28. Rybicki A., Florian J.M., "Thermocapillary effects in liquid bridges. I. Thermocapillary convection", Phys. Fluids, Vol. 30, p. 1956, (1987).

    Article  MATH  Google Scholar 

  29. Chen H., Saghir M. Z., "Three-dimensional Marangoni convection in the asymmetrically heated float zone", Microgravity Q., Vol. 4, p. 39 (1994).

    Google Scholar 

  30. Saghir M. Z., Maffei N., "Float zone of Bi12GeO20STS 77: experimental and numerical results", Microgravity Space Station Utilization Journal, Vol. 1 (1), p. 31, (1999).

    Google Scholar 

  31. Zhang Y., Alexander J.I., "Surface tension and buoyancy driven flow in a non isothermal liquid bridge", Int. J. Num. Meth. Fluids, Vol. 14, p.197, (1992).

    Article  MATH  Google Scholar 

  32. Chen G., Roux B., "Instability of thermocapillary convection in floating zones", Proceedings VIIIth European Symposium on Materials and fluid Sciences in Microgravity Brussels (Belgium), 12/16 April 1992, ESA SP-333, p. 73.

  33. Chen J. C., Chu C. F., “Numerical computation of fluid flow of floating-zone crystal growth of molybdenum”, Int. J. Heat Mass Transfer, Vol. 38, No. 10, p. 1841, (1995).

    Article  Google Scholar 

  34. Chen J. C., Wu H. K., “Numerical computation of heat flow, fluid flow and interface shapes in the float zone of lithium niobate during a melting process”, Int. J. Heat Mass Transfer, Vol. 39, No. 17, p. 3707, (1996).

    Article  Google Scholar 

  35. Chen J.C., Chin G. H., (1995), “Linear stability analysis of thermocapillary convection in the floating zone”, J. Cryst. Growth, Vol. 154, p. 98, (1995).

    Article  Google Scholar 

  36. Chenier E., Delcarte C., Labrosse G., “Stability of the axi-symmetric buoyant-capillary flows in a laterally heated liquid bridge”, Phys. Fluids, Vol. 11, No. 3, p. 527, (1999).

    Article  Google Scholar 

  37. Kasperski G., Batoul A., Labrosse G., “Up to the unsteadiness of axisymmetric thermocapillary flows in a laterally heated liquid bridge”, Phys. Fluids, Vol. 12, No. 1, p. 103, (2000).

    Article  Google Scholar 

  38. Leypoldt J., Kuhlmann H.C., Rath H.J., "Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges", J. Fluid Mech, Vol. 414, p. 285, (2000).

    Article  MATH  Google Scholar 

  39. Lappa M., Savino R., “Parallel solution of three-dimensional Marangoni flow in liquid bridges”, Int. J. Num. Meth. Fluids, Vol. 31, p. 911, (1999).

    Article  MATH  Google Scholar 

  40. Chen G., Lizee A., Roux B., "Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges", J. Cryst. Growth, Vol. 180, p. 238, (1997).

    Article  Google Scholar 

  41. Wanschura M., Kuhlmann H.C., Rath H.J., “Instability of thermocapillary flow in symmetrically heated full liquid zones”, Proceedings of the Journal of the Joint Xth European and Vith Russian Symposium on Physical Sciences in Microgravity, Avduyevsky V.S. & Polezhaev, V.I. (eds), 1, p. 172 (1997)

  42. Lappa M., “Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring”, Phys. Fluids, Vol. 15 (3), p. 776, (2003).

    Article  Google Scholar 

  43. Lappa M., "Combined effect of volume and gravity on the three-dimensional flow instability in non-cylindrical floating zones heated by an equatorial ring", Phys. Fluids Vol. 16 (2), p. 331, (2004).

    Article  MathSciNet  Google Scholar 

  44. Lappa M., "Fluids, Materials and Microgravity: Numerical techniques and insight into the physics", Elsevier, London, (2004).

    Google Scholar 

  45. Wanschura M., Kuhlmann H.C., Rath H.J., "Linear stability of two-dimensional combined buoyant-thermocapil lary flow in cylindrical liquid bridges", Physical Rev. E, Vol. 55 (6), p. 7036, (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Lappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappa, M. Floating zones heated around the equatorial plane: models and simulations. Microgravity Sci. Technol 15, 36–51 (2004). https://doi.org/10.1007/BF02870963

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870963

Keywords

Navigation